Revealing Tensor Monopoles through Quantum-Metric Measurements

Giandomenico Palumbo and Nathan Goldman
Phys. Rev. Lett. 121, 170401 – Published 24 October 2018
PDFHTMLExport Citation

Abstract

Monopoles are intriguing topological objects, which play a central role in gauge theories and topological states of matter. While conventional monopoles are found in odd-dimensional flat spaces, such as the Dirac monopole in three dimensions and the non-Abelian Yang monopole in five dimensions, more exotic objects were predicted to exist in even dimensions. This is the case of “tensor monopoles,” which are associated with tensor (Kalb-Ramond) gauge fields, and which can be defined in four-dimensional flat spaces. In this work, we investigate the possibility of creating and measuring such a tensor monopole in condensed-matter physics by introducing a realistic three-band model defined over a four-dimensional parameter space. Our probing method is based on the observation that the topological charge of this tensor monopole, which we relate to a generalized Berry curvature, can be directly extracted from the quantum metric. We propose a realistic three-level atomic system, where tensor monopoles could be generated and revealed through quantum-metric measurements.

  • Figure
  • Figure
  • Received 9 May 2018

DOI:https://doi.org/10.1103/PhysRevLett.121.170401

© 2018 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Giandomenico Palumbo and Nathan Goldman

  • Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 121, Iss. 17 — 26 October 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×