Quantum Oscillations in the Topological Superconductor Candidate Cu0.25Bi2Se3

Ben J. Lawson, Y. S. Hor, and Lu Li
Phys. Rev. Lett. 109, 226406 – Published 30 November 2012

Abstract

Quantum oscillations are generally studied to resolve the electronic structure of topological insulators. In Cu0.25Bi2Se3, the prime candidate of topological superconductors, quantum oscillations are still not observed in magnetotransport measurement. However, using torque magnetometry, quantum oscillations (the de Haas–van Alphen effect) were observed in Cu0.25Bi2Se3. The doping of Cu in Bi2Se3 increases the carrier density and the effective mass without increasing the scattering rate or decreasing the mean free path. In addition, the Fermi velocity remains the same in Cu0.25Bi2Se3 as that in Bi2Se3. Our results imply that the insertion of Cu does not change the band structure and that conduction electrons in Cu doped Bi2Se3 sit in the linear Dirac-like band.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 2 July 2012

DOI:https://doi.org/10.1103/PhysRevLett.109.226406

© 2012 American Physical Society

Authors & Affiliations

Ben J. Lawson1, Y. S. Hor2, and Lu Li1

  • 1Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 2Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 109, Iss. 22 — 30 November 2012

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×