• Open Access

Thermodynamics of hybrid quantum rotor devices

Heather Leitch, Kenza Hammam, and Gabriele De Chiara
Phys. Rev. E 109, 024108 – Published 13 February 2024

Abstract

We investigate the thermodynamics of a hybrid quantum device consisting of two qubits collectively interacting with a quantum rotor and coupled dissipatively to two equilibrium reservoirs at different temperatures. By modeling the dynamics and the resulting steady state of the system using a collision model, we identify the functioning of the device as a thermal engine, a refrigerator, or an accelerator. In addition, we also look into the device's capacity to operate as a heat rectifier and optimize both the rectification coefficient and the heat flow simultaneously. Drawing an analogy to heat rectification and since we are interested in the conversion of energy into the rotor's kinetic energy, we introduce the concept of angular momentum rectification, which may be employed to control work extraction through an external load.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 25 April 2023
  • Accepted 19 January 2024

DOI:https://doi.org/10.1103/PhysRevE.109.024108

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsQuantum Information, Science & Technology

Authors & Affiliations

Heather Leitch, Kenza Hammam, and Gabriele De Chiara

  • Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 2 — February 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×