• Open Access

Turbulence fingerprint on collective oscillations of supernova neutrinos

Sajad Abbar
Phys. Rev. D 103, 045014 – Published 23 February 2021

Abstract

We bring to light a novel mechanism through which turbulent matter density fluctuations can induce collective neutrino flavor conversions in core-collapse supernovae, i.e., the leakage of flavor instabilities between different Fourier modes. The leakage mechanism leaves its notable fingerprint on the flavor stability of a dense neutrino gas by coupling flavor conversion modes on different scales which in turn, makes the flavor instabilities almost ubiquitous in the Fourier space. This intriguing phenomenon arises from the fact that unlike the case of collective neutrino oscillations in a homogenous medium, the neutrino flavor conversion modes depend linearly on each other at different supernova zones in a turbulent medium. The most remarkable consequence of this effect is in that it allows for the presence of significant flavor conversions in the deepest supernova regions even in the absence of the so-called fast modes. This is yet another crucial impact of turbulence on the physics of core-collapse supernovae which can profoundly change our understanding of neutrino flavor conversions in the supernova environment.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 28 July 2020
  • Accepted 5 February 2021

DOI:https://doi.org/10.1103/PhysRevD.103.045014

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Sajad Abbar

  • Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 103, Iss. 4 — 15 February 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×