Neutron star inner crust: Nuclear physics input

Andrew W. Steiner
Phys. Rev. C 77, 035805 – Published 18 March 2008

Abstract

A fully self-consistent model of the neutron star inner crust based upon models of the nucleonic equation of state at zero temperature is constructed. The results nearly match those of previous calculations of the inner crust given the same input equation of state. The extent to which the uncertainties in the symmetry energy, the compressibility, and the equation of state of low-density neutron matter affect the composition of the crust are examined. The composition and pressure of the crust is sensitive to the description of low-density neutron matter and the nuclear symmetry energy, and the latter dependence is nonmonotonic, giving larger nuclei for moderate symmetry energies and smaller nuclei for more extreme symmetry energies. Future nuclear experiments may help constrain the crust and future astrophysical observations may constrain the nuclear physics input.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 15 January 2008

DOI:https://doi.org/10.1103/PhysRevC.77.035805

©2008 American Physical Society

Authors & Affiliations

Andrew W. Steiner

  • Joint Institute for Nuclear Astrophysics, National Superconducting Cyclotron Laboratory and the Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 3 — March 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×