Exact solution of the px+ipy pairing Hamiltonian by deforming the pairing algebra

Mario Van Raemdonck, Stijn De Baerdemacker, and Dimitri Van Neck
Phys. Rev. B 89, 155136 – Published 28 April 2014
PDFHTMLExport Citation

Abstract

Recently, interest has increased in the hyperbolic family of integrable Richardson-Gaudin (RG) models. It was pointed out that a particular linear combination of the integrals of motion of the hyperbolic RG model leads to a Hamiltonian that describes p-wave pairing in a two-dimensional system. Such an interaction is found to be present in fermionic superfluids (3He), ultracold atomic gases, and p-wave superconductivity. Furthermore the phase diagram is intriguing, with the presence of the Moore-Read and Read-Green lines. At the Read-Green line a rare third-order quantum phase transition occurs. The present paper makes a connection between collective bosonic states and the exact solutions of the px+ipy pairing Hamiltonian. This makes it possible to investigate the effects of the Pauli principle on the energy spectrum, by gradually reintroducing the Pauli principle. It also introduces an efficient and stable numerical method to probe all the eigenstates of this class of Hamiltonians. We extend the phase diagram to repulsive interactions, an area that was not previously explored due to the lack of a proper mean-field solution in this region. We found a connection between the point in the phase diagram where the ground state connects to the bosonic state with the highest collectivity, and the Moore-Read line where all the Richardson-Gaudin (RG) variables collapse to zero. In contrast with the reduced BCS case, the overlap between the ground state and the highest collective state at the Moore-Read line is not the largest. In fact it shows a minimum when most other bosonic states show a maximum of the overlap. We found remnants of the Read-Green line for finite systems, by investigating the total spectrum. A symmetry was found between the Hamiltonian with and without single-particle part. When the interaction was repulsive we found four different classes of trajectories of the RG variables.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 10 February 2014
  • Revised 10 April 2014

DOI:https://doi.org/10.1103/PhysRevB.89.155136

©2014 American Physical Society

Authors & Affiliations

Mario Van Raemdonck*

  • Ghent Quantum Chemistry Group, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium and Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium

Stijn De Baerdemacker and Dimitri Van Neck

  • Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium

  • *mariovr5@hotmail.com

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 15 — 15 April 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×