• Rapid Communication

Engineering quantum spin Hall effect in graphene nanoribbons via edge functionalization

Gabriel Autès and Oleg V. Yazyev
Phys. Rev. B 87, 241404(R) – Published 17 June 2013
PDFHTMLExport Citation

Abstract

Kane and Mele predicted that in the presence of spin-orbit interaction graphene realizes the quantum spin Hall state [Phys. Rev. Lett. 95, 226801 (2005)]. However, exceptionally weak intrinsic spin-orbit splitting in graphene (105 eV) inhibits experimental observation of this topological insulating phase. To circumvent this problem, we propose an approach towards controlling spin-orbit interactions in graphene by means of covalent functionalization of graphene edges with functional groups containing heavy elements. Proof-of-concept first-principles calculations show that very strong spin-orbit coupling can be induced in realistic models of narrow graphene nanoribbons with tellurium-terminated edges. We demonstrate that electronic bands with strong Rashba splitting as well as the quantum spin Hall state spanning broad energy ranges can be realized in such systems. Our work thus helps pave the way towards engineering topological electronic phases in nanostructures based on graphene and other materials by means of locally introduced spin-orbit interactions.

  • Figure
  • Figure
  • Figure
  • Received 22 November 2012

DOI:https://doi.org/10.1103/PhysRevB.87.241404

©2013 American Physical Society

Authors & Affiliations

Gabriel Autès and Oleg V. Yazyev

  • Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 24 — 15 June 2013

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×