Ferroelectric to paraelectric structural transition in LiTaO3 and LiNbO3

Felix Bernhardt, Leonard M. Verhoff, Nils A. Schäfer, Alexander Kapp, Christa Fink, Wafaa Al Nachwati, Umar Bashir, Detlef Klimm, Fatima El Azzouzi, Uliana Yakhnevych, Yuriy Suhak, Harald Schmidt, Klaus-Dieter Becker, Steffen Ganschow, Holger Fritze, and Simone Sanna
Phys. Rev. Materials 8, 054406 – Published 7 May 2024

Abstract

The ferroelectric to paraelectric phase transition in LiTaO3 and in pure as well as Mg-doped LiNbO3 is investigated theoretically by atomistic calculations in the framework of the density functional theory, as well as experimentally by calorimetry and electrical conductivity measurements. First-principles models within the stochastic self-consistent harmonic approximation (SSCHA) allow to consider anharmonic effects and thus to obtain a realistic estimate of the Curie temperature TC of both ferroelectrics. Ab initio molecular dynamics (AIMD) calculations performed on large supercells confirm the Curie temperatures estimated with the SSCHA approach. Moreover, they also suggest that the structural phase transition is a continuous process beginning at temperatures well below TC. According to AIMD, significant ionic displacements occur already at temperatures of about 100 K and 300 K below TC in LiTaO3 and LiNbO3, respectively. To asses whether and how far the ionic displacements affect the materials properties, the AIMD results are compared with measurements of the electrical conductivity and of the heat capacity across the phase transition. Our first-principles calculations moreover show that Mg ions, a frequently employed dopant, raise the Curie temperature in LiNbO3.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 4 January 2024
  • Revised 11 March 2024
  • Accepted 15 April 2024

DOI:https://doi.org/10.1103/PhysRevMaterials.8.054406

©2024 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Felix Bernhardt1,2,*, Leonard M. Verhoff1, Nils A. Schäfer1, Alexander Kapp1, Christa Fink1,2, Wafaa Al Nachwati1, Umar Bashir3, Detlef Klimm3, Fatima El Azzouzi4, Uliana Yakhnevych4, Yuriy Suhak4, Harald Schmidt5, Klaus-Dieter Becker6, Steffen Ganschow3, Holger Fritze4, and Simone Sanna1,2

  • 1Institut für Theoretische Physik, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
  • 2Center for Materials Research (ZfM/LaMa), Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
  • 3Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany
  • 4Institut für Energieforschung und Physikalische Technologien, Technische Universität Clausthal, Am Stollen 19B, 38640 Goslar, Germany
  • 5Institut für Metallurgie, Technische Universität Clausthal, 38678 Clausthal-Zellerfeld, Germany
  • 6Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany

  • *Corresponding author: felix.bernhardt@theo.physik.uni-giessen.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 8, Iss. 5 — May 2024

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×