• Editors' Suggestion

Field-Induced Hybridization of Moiré Excitons in MoSe2/WS2 Heterobilayers

Borislav Polovnikov, Johannes Scherzer, Subhradeep Misra, Xin Huang, Christian Mohl, Zhijie Li, Jonas Göser, Jonathan Förste, Ismail Bilgin, Kenji Watanabe, Takashi Taniguchi, Alexander Högele, and Anvar S. Baimuratov
Phys. Rev. Lett. 132, 076902 – Published 16 February 2024
PDFHTMLExport Citation

Abstract

We study experimentally and theoretically the hybridization among intralayer and interlayer moiré excitons in a MoSe2/WS2 heterostructure with antiparallel alignment. Using a dual-gate device and cryogenic white light reflectance and narrow-band laser modulation spectroscopy, we subject the moiré excitons in the MoSe2/WS2 heterostack to a perpendicular electric field, monitor the field-induced dispersion and hybridization of intralayer and interlayer moiré exciton states, and induce a crossover from type I to type II band alignment. Moreover, we employ perpendicular magnetic fields to map out the dependence of the corresponding exciton Landé g factors on the electric field. Finally, we develop an effective theoretical model combining resonant and nonresonant contributions to moiré potentials to explain the observed phenomenology, and highlight the relevance of interlayer coupling for structures with close energetic band alignment as in MoSe2/WS2.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 April 2023
  • Accepted 19 January 2024

DOI:https://doi.org/10.1103/PhysRevLett.132.076902

© 2024 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Borislav Polovnikov1,2,*,§, Johannes Scherzer1,§, Subhradeep Misra1,§, Xin Huang1,3,4, Christian Mohl1, Zhijie Li1, Jonas Göser1, Jonathan Förste1, Ismail Bilgin1, Kenji Watanabe5, Takashi Taniguchi6, Alexander Högele1,7,†, and Anvar S. Baimuratov1,‡

  • 1Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
  • 2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany
  • 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
  • 4School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
  • 5Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
  • 6Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
  • 7Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany

  • *Corresponding author: borislav.polovnikov@physik.uni-muenchen.de
  • Corresponding author: alexander.hoegele@lmu.de
  • Corresponding author: anvar.baimuratov@lmu.de
  • §These authors contributed equally to this work.

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 132, Iss. 7 — 16 February 2024

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×