Zero Magnetic Field Plateau Phase Transition in Higher Chern Number Quantum Anomalous Hall Insulators

Yi-Fan Zhao, Ruoxi Zhang, Ling-Jie Zhou, Ruobing Mei, Zi-Jie Yan, Moses H. W. Chan, Chao-Xing Liu, and Cui-Zu Chang
Phys. Rev. Lett. 128, 216801 – Published 27 May 2022
PDFHTMLExport Citation

Abstract

The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (QAH) insulators with tunable Chern numbers introduces the channel degree of freedom to the dissipation-free chiral edge transport and makes the study of the quantum phase transition between two topological states under zero magnetic field possible. Here, we synthesized the magnetic topological insulator (TI)/TI pentalayer heterostructures with different Cr doping concentrations in the middle magnetic TI layers using molecular beam epitaxy. By performing transport measurements, we found a potential plateau phase transition between C=1 and C=2 QAH states under zero magnetic field. In tuning the transition, the Hall resistance monotonically decreases from h/e2 to h/2e2, concurrently, the longitudinal resistance exhibits a maximum at the critical point. Our results show that the ratio between the Hall resistance and the longitudinal resistance is greater than 1 at the critical point, which indicates that the original chiral edge channel from the C=1 QAH state coexists with the dissipative bulk conduction channels. Subsequently, these bulk conduction channels appear to self-organize and form the second chiral edge channel in completing the plateau phase transition. Our study will motivate further investigations of this novel Chern number change-induced quantum phase transition and advance the development of the QAH chiral edge current-based electronic and spintronic devices.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 29 September 2021
  • Accepted 6 May 2022

DOI:https://doi.org/10.1103/PhysRevLett.128.216801

© 2022 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Yi-Fan Zhao, Ruoxi Zhang, Ling-Jie Zhou, Ruobing Mei, Zi-Jie Yan, Moses H. W. Chan, Chao-Xing Liu, and Cui-Zu Chang*

  • Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

  • *Corresponding author. cxc955@psu.edu
  • Y.-F. Z. and R. Z. contributed equally.

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 128, Iss. 21 — 27 May 2022

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×