Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos

Bruno Bertini, Pavel Kos, and Tomaž Prosen
Phys. Rev. Lett. 121, 264101 – Published 27 December 2018
PDFHTMLExport Citation

Abstract

The most general and versatile defining feature of quantum chaotic systems is that they possess an energy spectrum with correlations universally described by random matrix theory (RMT). This feature can be exhibited by systems with a well-defined classical limit as well as by systems with no classical correspondence, such as locally interacting spins or fermions. Despite great phenomenological success, a general mechanism explaining the emergence of RMT without reference to semiclassical concepts is still missing. Here we provide the example of a quantum many-body system with no semiclassical limit (no large parameter) where the emergence of RMT spectral correlations is proven exactly. Specifically, we consider a periodically driven Ising model and write the Fourier transform of spectral density’s two-point function, the spectral form factor, in terms of a partition function of a two-dimensional classical Ising model featuring a space-time duality. We show that the self-dual cases provide a minimal model of many-body quantum chaos, where the spectral form factor is demonstrated to match RMT for all values of the integer time variable t in the thermodynamic limit. In particular, we rigorously prove RMT form factor for an odd t, while we formulate a precise conjecture for an even t. The results imply ergodicity for any finite amount of disorder in the longitudinal field, rigorously excluding the possibility of many-body localization. Our method provides a novel route for obtaining exact nonperturbative results in nonintegrable systems.

  • Figure
  • Figure
  • Figure
  • Received 22 May 2018

DOI:https://doi.org/10.1103/PhysRevLett.121.264101

© 2018 American Physical Society

Physics Subject Headings (PhySH)

General PhysicsStatistical Physics & ThermodynamicsNonlinear Dynamics

Authors & Affiliations

Bruno Bertini, Pavel Kos, and Tomaž Prosen

  • Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 121, Iss. 26 — 28 December 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×