Quantum Field Theory of Nematic Transitions in Spin-Orbit-Coupled Spin-1 Polar Bosons

E. J. König and J. H. Pixley
Phys. Rev. Lett. 121, 083402 – Published 22 August 2018
PDFHTMLExport Citation

Abstract

We theoretically study an ultracold gas of spin-1 polar bosons in a one-dimensional continuum, which are subject to linear and quadratic Zeeman fields and a Raman induced spin orbit coupling. Concentrating on the regime in which the background fields can be treated perturbatively, we analytically solve the model in its low-energy sector; i.e., we characterize the relevant phases and the quantum phase transitions between them. Depending on the sign of the effective quadratic Zeeman field ε, two superfluid phases with distinct nematic order appear. In addition, we uncover a spin-disordered superfluid phase at strong coupling. We employ a combination of renormalization group calculations and duality transformations to access the nature of the phase transitions. At ε=0, a line of spin-charge separated pairs of Luttinger liquids divides the two nematic phases, and the transition to the spin-disordered state at strong coupling is of the Berezinskii-Kosterlitz-Thouless type. In contrast, at ε0, the quantum critical theory separating nematic and strong coupling spin-disordered phases contains a Luttinger liquid in the charge sector that is coupled to a Majorana fermion in the spin sector (i.e., the critical theory at finite ε maps to a quantum critical Ising model that is coupled to the charge Luttinger liquid). Because of an emergent Lorentz symmetry, both have the same logarithmically diverging velocity. We discuss the experimental signatures of our findings that are relevant to ongoing experiments in ultracold atomic gases of Na23.

  • Figure
  • Figure
  • Figure
  • Received 6 March 2018

DOI:https://doi.org/10.1103/PhysRevLett.121.083402

© 2018 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

E. J. König and J. H. Pixley

  • Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 121, Iss. 8 — 24 August 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×