Realization of a Distributed Bragg Reflector for Propagating Guided Matter Waves

C. M. Fabre, P. Cheiney, G. L. Gattobigio, F. Vermersch, S. Faure, R. Mathevet, T. Lahaye, and D. Guéry-Odelin
Phys. Rev. Lett. 107, 230401 – Published 29 November 2011
PDFHTMLExport Citation

Abstract

We report on the experimental study of a Bragg reflector for guided, propagating Bose-Einstein condensates. A one-dimensional attractive optical lattice of finite length created by red-detuned laser beams selectively reflects some velocity components of the incident matter wave packet. We find quantitative agreement between the experimental data and one-dimensional numerical simulations and show that the Gaussian envelope of the optical lattice has a major influence on the properties of the reflector. In particular, it gives rise to multiple reflections of the wave packet between two symmetric locations where Bragg reflection occurs. Our results are a further step towards integrated atom-optics setups for quasi-cw matter waves.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 July 2011

DOI:https://doi.org/10.1103/PhysRevLett.107.230401

© 2011 American Physical Society

Authors & Affiliations

C. M. Fabre, P. Cheiney, G. L. Gattobigio, F. Vermersch, S. Faure, R. Mathevet, T. Lahaye, and D. Guéry-Odelin

  • Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse, France and CNRS, UMR 5589, F-31062 Toulouse, France

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 107, Iss. 23 — 2 December 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×