Dispersion for two classes of random variables: General theory and application to inference of an external ligand concentration by a cell

Andre C. Barato and Udo Seifert
Phys. Rev. E 92, 032127 – Published 21 September 2015

Abstract

We derive expressions for the dispersion for two classes of random variables in Markov processes. Random variables such as current and activity pertain to the first class, which is composed of random variables that change whenever a jump in the stochastic trajectory occurs. The second class corresponds to the time the trajectory spends in a state (or cluster of states). While the expression for the first class follows straightforwardly from known results in the literature, we show that a similar formalism can be used to derive an expression for the second class. As an application, we use this formalism to analyze a cellular two-component network estimating an external ligand concentration. The uncertainty related to this external concentration is calculated by monitoring different random variables related to an internal protein. We show that, inter alia, monitoring the time spent in the phosphorylated state of the protein leads to a finite uncertainty only if there is dissipation, whereas the uncertainty obtained from the activity of the transitions of the internal protein can reach the Berg-Purcell limit even in equilibrium.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 May 2015

DOI:https://doi.org/10.1103/PhysRevE.92.032127

©2015 American Physical Society

Authors & Affiliations

Andre C. Barato and Udo Seifert

  • II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 92, Iss. 3 — September 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×