• Open Access

Resisting collapse: How matter inside a black hole can withstand gravity

Ram Brustein and A. J. M. Medved
Phys. Rev. D 99, 064019 – Published 15 March 2019

Abstract

How can a Schwarzschild-sized matter system avoid a fate of gravitational collapse? To address this question, we critically reexamine the arguments that led to the “Buchdahl bound,” which implies that the minimal size of a stable, compact object must be larger than nine eighths of its own Schwarzschild radius. Following Mazur and Mottola, and in line with other counterexamples to the singularity theorems, we identify large negative radial pressure extending to the gravitational radius as the essential ingredient for evading the Buchdahl bound. Our results are novel although consistent with many other investigations of models of nonsingular black holes. It is shown in particular that a large negative pressure in the framework of classical GR translates into a large positive pressure once quantum physics is incorporated. In this way, a Schwarzschild-sized bound state of closed, interacting fundamental strings in its high-temperature Hagedorn phase can appear to have negative pressure and thus the ability to resist gravitational collapse.

  • Received 20 June 2018

DOI:https://doi.org/10.1103/PhysRevD.99.064019

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Ram Brustein1,* and A. J. M. Medved2,3,†

  • 1Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
  • 2Department of Physics & Electronics, Rhodes University, Grahamstown 6140, South Africa
  • 3National Institute for Theoretical Physics (NITheP), Western Cape 7602, South Africa

  • *ramyb@bgu.ac.il
  • j.medved@ru.ac.za

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 99, Iss. 6 — 15 March 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×