Tracing through scalar entanglement

Christopher P. Herzog and Michael Spillane
Phys. Rev. D 87, 025012 – Published 4 January 2013

Abstract

As a toy model of a gapped system, we investigate the entanglement entropy of a massive scalar field in 1+1 dimensions at nonzero temperature. In a small mass m and temperature T limit, we put upper and lower bounds on the two largest eigenvalues of the covariance matrix used to compute the entanglement entropy. We argue that the entanglement entropy has em/T scaling in the limit Tm. We comment on the relation between our work and the Ryu-Takayanagi proposal for computing the entanglement entropy holographically.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 6 November 2012

DOI:https://doi.org/10.1103/PhysRevD.87.025012

© 2013 American Physical Society

Authors & Affiliations

Christopher P. Herzog and Michael Spillane

  • C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 2 — 15 January 2013

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×