Chiral transition within effective quark models under magnetic fields

Gabriel N. Ferrari, Andre F. Garcia, and Marcus B. Pinto
Phys. Rev. D 86, 096005 – Published 15 November 2012

Abstract

We consider the simplest versions of the Nambu–Jona-Lasinio model and the linear sigma model, in the mean field approximation, in order to analyze hot and dense two flavor quark matter subject to strong magnetic fields. We pay special attention to the case of a finite chemical potential, which has not yet been fully explored. Our results, for the Nambu–Jona-Lasinio model, are in qualitative agreement with other recent applications showing that, for stronger fields, the first order segment of the transition line increases with the magnetic strength while the coexistence chemical potential value, at low temperatures, decreases. In the present work, one of the most important results is related to the analysis of how these features affect the phase coexistence region in the TρB plane. We find that the coexistence boundary oscillates around the B=0 value for magnetic fields of the order eB9.5mπ2, which can be understood by investigating the filling of Landau levels at vanishing temperature. So far, most investigations have been concerned with the effects of the magnetic field over the Tμ plane only while other thermodynamical quantities such as the adiabats, the quark number susceptibility, the interaction measure and the latent heat have been neglected. Here, we take a step towards filling this gap by investigating the influence of a magnetic field over these quantities. Finally, we argue that a naive application of the mean field approximation does not seem to be appropriate to treat the linear sigma model in the presence of magnetic fields.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 19 August 2012

DOI:https://doi.org/10.1103/PhysRevD.86.096005

© 2012 American Physical Society

Authors & Affiliations

Gabriel N. Ferrari, Andre F. Garcia, and Marcus B. Pinto*

  • Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil

  • *marcus@fsc.ufsc.br

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 86, Iss. 9 — 1 November 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×