Dark Energy Survey Year 3 results: Measurement of the baryon acoustic oscillations with three-dimensional clustering

K. C. Chan et al. (DES Collaboration)
Phys. Rev. D 106, 123502 – Published 8 December 2022

Abstract

The three-dimensional correlation function offers an effective way to summarize the correlation of the large-scale structure even for imaging galaxy surveys. We have applied the projected three-dimensional correlation function, ξp to measure the baryonic acoustic oscillations (BAO) scale on the first-three years Dark Energy Survey data. The sample consists of about 7 million galaxies in the redshift range 0.6<zp<1.1 over a footprint of 4108deg2. Our theory modeling includes the impact of realistic true redshift distributions beyond Gaussian photo-z approximation. ξp is obtained by projecting the three-dimensional correlation to the transverse direction. To increase the signal-to-noise of the measurements, we have considered a Gaussian stacking window function in place of the commonly used top-hat. ξp is sensitive to DM(zeff)/rs, the ratio between the comoving angular diameter distance and the sound horizon. Using the full sample, DM(zeff)/rs is constrained to be 19.00±0.67 (top-hat) and 19.15±0.58 (Gaussian) at zeff=0.835. The constraint is weaker than the angular correlation w constraint (18.84±0.50), and we trace this to the fact that the BAO signals are heterogeneous across redshift. While ξp responds to the heterogeneous signals by enlarging the error bar, w can still give a tight bound on DM/rs in this case. When a homogeneous BAO-signal subsample in the range 0.7<zp<1.0 (zeff=0.845) is considered, ξp yields 19.80±0.67 (top-hat) and 19.84±0.53 (Gaussian). The latter is mildly stronger than the w constraint (19.86±0.55). We find that the ξp results are more sensitive to photo-z errors than w because ξp keeps the three-dimensional clustering information causing it to be more prone to photo-z noise. The Gaussian window gives more robust results than the top-hat as the former is designed to suppress the low signal modes. ξp and the angular statistics such as w have their own pros and cons, and they serve an important crosscheck with each other.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 13 October 2022
  • Accepted 21 November 2022

DOI:https://doi.org/10.1103/PhysRevD.106.123502

© 2022 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 106, Iss. 12 — 15 December 2022

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×