• Editors' Suggestion
  • Rapid Communication

Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3

F. Chen et al.
Phys. Rev. B 94, 180104(R) – Published 22 November 2016
PDFHTMLExport Citation

Abstract

The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 January 2016
  • Revised 24 October 2016

DOI:https://doi.org/10.1103/PhysRevB.94.180104

©2016 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Click to Expand

Comments & Replies

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 18 — 1 November 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×