Quasiparticle interaction function in a two-dimensional Fermi liquid near an antiferromagnetic critical point

Andrey V. Chubukov and Peter Wölfle
Phys. Rev. B 89, 045108 – Published 9 January 2014

Abstract

We present the expression for the quasiparticle vertex function Γω(KF,PF) (proportional to the Landau interaction function) in a 2D Fermi liquid (FL) near an instability towards antiferromagnetism. This function is relevant in many ways in the context of metallic quantum criticality. Previous studies have found that near a quantum critical point, the system enters into a regime in which the fermionic self-energy is large near hot spots on the Fermi surface [points on the Fermi surface connected by the antiferromagnetic ordering vector qπ=(π,π)] and has much stronger dependence on frequency than on momentum. We show that in this regime, which we termed a critical FL, the conventional random-phase-approximation- (RPA) type approach breaks down, and to properly calculate the vertex function one has to sum up an infinite series of terms which were explicitly excluded in the conventional treatment. Besides, we show that, to properly describe the spin component of Γω(KF,PF) even in an ordinary FL, one has to add Aslamazov-Larkin (AL) terms to the RPA vertex. We show that the total Γω(KF,PF) is larger in a critical FL than in an ordinary FL, roughly by an extra power of magnetic correlation length ξ, which diverges at the quantum critical point. However, the enhancement of Γω(KF,PF) is highly nonuniform: It holds only when, for one of the two momentum variables, the distance from a hot spot along the Fermi surface is much larger than for the other one. This fact renders our case different from quantum criticality at small momentum, where the enhancement of Γω(KF,PF) was found to be homogeneous. We show that the charge and spin components of the total vertex function satisfy the universal relations following from the Ward identities related to the conservation of the particle number and the total spin. We show that in a critical FL, the Ward identity involves Γω(KF,PF) taken between particles on the FS. We find that the charge and spin components of Γω(KF,PF) are identical to leading order in the magnetic correlation length. We use our results for Γω(KF,PF) and for the quasiparticle residue to derive the Landau parameters Fcl=0=Fsl=0, the density of states, and the uniform (q=0) charge and spin susceptibilities χcl=0=χsl=0. We show that the density of states NF diverges as logξ; however, Fc,sl=0 also diverge as logξ, such that the total χc,s(l=0)NF/(1+Fcl=0) remain finite at ξ=. We show that at weak coupling these susceptibilities are parametrically smaller than for free fermions.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
14 More
  • Received 20 September 2013

DOI:https://doi.org/10.1103/PhysRevB.89.045108

©2014 American Physical Society

Authors & Affiliations

Andrey V. Chubukov

  • Department of Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, USA

Peter Wölfle

  • Institute for Condensed Matter Theory and Institute for Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 4 — 15 January 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×