Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems

Román Orús
Phys. Rev. B 85, 205117 – Published 10 May 2012

Abstract

In this paper we explore the practical use of the corner transfer matrix and its higher-dimensional generalization, the corner tensor, to develop tensor network algorithms for the classical simulation of quantum lattice systems of infinite size. This exploration is done mainly in one and two spatial dimensions (1D and 2D). We describe a number of numerical algorithms based on corner matrices and tensors to approximate different ground-state properties of these systems. The proposed methods also make use of matrix product operators and projected entangled pair operators and naturally preserve spatial symmetries of the system such as translation invariance. In order to assess the validity of our algorithms, we provide preliminary benchmarking calculations for the spin-1/2 quantum Ising model in a transverse field in both 1D and 2D. Our methods are a plausible alternative to other well-established tensor network approaches such as iDMRG and iTEBD in 1D, and iPEPS and TERG in 2D. The computational complexity of the proposed algorithms is also considered and, in 2D, important differences are found depending on the chosen simulation scheme. We also discuss further possibilities, such as 3D quantum lattice systems, periodic boundary conditions, and real-time evolution. This discussion leads us to reinterpret the standard iTEBD and iPEPS algorithms in terms of corner transfer matrices and corner tensors. Our paper also offers a perspective on many properties of the corner transfer matrix and its higher-dimensional generalizations in the light of novel tensor network methods.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
25 More
  • Received 21 December 2011

DOI:https://doi.org/10.1103/PhysRevB.85.205117

©2012 American Physical Society

Authors & Affiliations

Román Orús

  • Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 20 — 15 May 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×