Many-body GW calculation of the oxygen vacancy in ZnO

Stephan Lany and Alex Zunger
Phys. Rev. B 81, 113201 – Published 12 March 2010

Abstract

Density-functional theory (DFT) calculations of defect levels in semiconductors based on approximate functionals are subject to considerable uncertainties, in particular due to inaccurate band-gap energies. Testing previous correction methods by many-body GW calculations for the O vacancy in ZnO, we find that: (i) The GW quasiparticle shifts of the VO defect states increase the spitting between occupied and unoccupied states due to self-interaction correction, and do not reflect the conduction- versus valence-band character. (ii) The GW quasiparticle energies of charged defect states require important corrections for supercell finite-size effects. (iii) The GW results are robust with respect to the choice of the underlying DFT or hybrid-DFT functional, and the (2+/0) donor transition lies below midgap, close to our previous prediction employing rigid band-edge shifts.

  • Figure
  • Figure
  • Figure
  • Received 13 October 2009

DOI:https://doi.org/10.1103/PhysRevB.81.113201

©2010 American Physical Society

Authors & Affiliations

Stephan Lany and Alex Zunger

  • National Renewable Energy Laboratory, Golden, Colorado 80401, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 11 — 15 March 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×