Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite

Hendrik Ulbricht, Gunnar Moos, and Tobias Hertel
Phys. Rev. B 66, 075404 – Published 5 August 2002
PDFExport Citation

Abstract

We present a study on the kinetics of oxygen adsorption and desorption from single-wall carbon nanotube (SWNT) and highly oriented pyrolytic graphite (HOPG) samples. Thermal-desorption spectra for SWNT samples show a broad desorption feature peaked at 62 K, which is shifted to a significantly higher temperature than the low-coverage desorption feature on HOPG. The low-coverage O2 binding energy on SWNT bundles (18.5 kJ/mol) is 55% higher than that for adsorption on HOPG (12.0 kJ/mol). In combination with molecular mechanics calculations we show that the observed binding energies for both systems can be attributed to van der Waals interactions, i.e., physisorption. The experiments provide no evidence for a more strongly bound chemisorbed species or for dissociative oxygen adsorption.

  • Received 1 May 2002

DOI:https://doi.org/10.1103/PhysRevB.66.075404

©2002 American Physical Society

Authors & Affiliations

Hendrik Ulbricht, Gunnar Moos, and Tobias Hertel

  • Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

References (Subscription Required)

Click to Expand
Issue

Vol. 66, Iss. 7 — 15 August 2002

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×