Defect ordering in aliovalently doped cubic zirconia from first principles

A. Bogicevic, C. Wolverton, G. M. Crosbie, and E. B. Stechel
Phys. Rev. B 64, 014106 – Published 13 June 2001
PDFExport Citation

Abstract

Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δZr3Y4O12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along 111 directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y2O3 and Sc2O3-stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In2O3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations.

  • Received 31 January 2001

DOI:https://doi.org/10.1103/PhysRevB.64.014106

©2001 American Physical Society

Authors & Affiliations

A. Bogicevic, C. Wolverton, G. M. Crosbie, and E. B. Stechel

  • Scientific Research Laboratories, Ford Motor Company, Dearborn, Michigan 48121-2053

References (Subscription Required)

Click to Expand
Issue

Vol. 64, Iss. 1 — 1 July 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×