Phase-field model for isothermal phase transitions in binary alloys

A. A. Wheeler, W. J. Boettinger, and G. B. McFadden
Phys. Rev. A 45, 7424 – Published 1 May 1992
PDFExport Citation

Abstract

In this paper we present a phase-field model to describe isothermal phase transitions between ideal binary-alloy liquid and solid phases. Governing equations are developed for the temporal and spatial variation of the phase field, which identifies the local state or phase, and for the composition. An asymptotic analysis as the gradient energy coefficient of the phase field becomes small shows that our model recovers classical sharp-interface models of alloy solidification when the interfacial layers are thin, and we relate the parameters appearing in the phase-field model to material and growth parameters in real systems. We identify three stages of temporal evolution for the governing equations: the first corresponds to interfacial genesis, which occurs very rapidly; the second to interfacial motion controlled by diffusion and the local energy difference across the interface; the last takes place on a long time scale in which curvature effects are important, and corresponds to Ostwald ripening. We also present results of numerical calculations.

  • Received 23 January 1992

DOI:https://doi.org/10.1103/PhysRevA.45.7424

©1992 American Physical Society

Authors & Affiliations

A. A. Wheeler, W. J. Boettinger, and G. B. McFadden

  • National Institute of Standards and Technology, Gaithersburg, Maryland 20899

References (Subscription Required)

Click to Expand
Issue

Vol. 45, Iss. 10 — May 1992

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×