1887

Abstract

We have previously demonstrated that an intact PSAP motif in the ORF3 protein is required for the formation and release of membrane-associated hepatitis E virus (HEV) particles with ORF3 proteins on their surface. In this study, we investigated the direct interaction between the ORF3 protein and tumour susceptibility gene 101 (Tsg101), a cellular factor involved in the budding of viruses containing the P(T/S)AP late-domain, in PLC/PRF/5 cells expressing the wild-type or PSAP-mutated ORF3 protein and Tsg101 by co-immunoprecipitation. Tsg101 bound to wild-type ORF3 protein, but not to the PSAP-inactive ORF3 protein. To examine whether HEV utilizes the multivesicular body (MVB) pathway to release the virus particles, we analysed the efficiency of virion release from cells upon introduction of small interfering RNA (siRNA) against Tsg101 or dominant-negative (DN) mutants of Vps4 (Vps4A and Vps4B). The relative levels of virus particles released from cells depleted of Tsg101 decreased to 6.4 % of those transfected with negative control siRNA. Similarly, virion egress was significantly reduced by the overexpression of DN forms (Vps4AEQ or Vps4BEQ). The relative levels of virus particles released from cells expressing Vps4AEQ and Vps4BEQ were 19.2 and 15.6 %, respectively, while the overexpression of wild-type Vps4A and Vps4B did not alter the levels of virus release. These results indicate that the ORF3 protein interacts with Tsg101 through the PSAP motifs in infected cells, and that Tsg101 and the enzymic activities of Vps4A and Vps4B are involved in HEV release, thus suggesting that HEV requires the MVB pathway for egress of virus particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.035378-0
2011-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/12/2838.html?itemId=/content/journal/jgv/10.1099/vir.0.035378-0&mimeType=html&fmt=ahah

References

  1. Agrawal S., Gupta D., Panda S. K. 2001; The 3′ end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). Virology 282:87–101 [View Article][PubMed]
    [Google Scholar]
  2. Ahmad I., Holla R. P., Jameel S. 2011; Molecular virology of hepatitis E virus. Virus Res 161:47–58 [View Article][PubMed]
    [Google Scholar]
  3. Ariumi Y., Kuroki M., Maki M., Ikeda M., Dansako H., Wakita T., Kato N. 2011; The ESCRT system is required for hepatitis C virus production. PLoS ONE 6:e14517 [View Article][PubMed]
    [Google Scholar]
  4. Babst M., Wendland B., Estepa E. J., Emr S. D. 1998; The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993 [View Article][PubMed]
    [Google Scholar]
  5. Babst M., Katzmann D. J., Estepa-Sabal E. J., Meerloo T., Emr S. D. 2002a; Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282 [View Article][PubMed]
    [Google Scholar]
  6. Babst M., Katzmann D. J., Snyder W. B., Wendland B., Emr S. D. 2002b; Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3:283–289 [View Article][PubMed]
    [Google Scholar]
  7. Bishop N., Woodman P. 2001; TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J Biol Chem 276:11735–11742 [View Article][PubMed]
    [Google Scholar]
  8. Chandra V., Taneja S., Kalia M., Jameel S. 2008; Molecular biology and pathogenesis of hepatitis E virus. J Biosci 33:451–464 [View Article][PubMed]
    [Google Scholar]
  9. Chen B. J., Lamb R. A. 2008; Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?. Virology 372:221–232 [View Article][PubMed]
    [Google Scholar]
  10. Colson P., Borentain P., Queyriaux B., Kaba M., Moal V., Gallian P., Heyries L., Raoult D., Gerolami R. 2010; Pig liver sausage as a source of hepatitis E virus transmission to humans. J Infect Dis 202:825–834 [View Article][PubMed]
    [Google Scholar]
  11. Corless L., Crump C. M., Griffin S. D., Harris M. 2010; Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. J Gen Virol 91:362–372 [View Article][PubMed]
    [Google Scholar]
  12. Crump C. M., Yates C., Minson T. 2007; Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol 81:7380–7387 [View Article][PubMed]
    [Google Scholar]
  13. Dalton H. R., Bendall R., Ijaz S., Banks M. 2008; Hepatitis E: an emerging infection in developed countries. Lancet Infect Dis 8:698–709 [View Article][PubMed]
    [Google Scholar]
  14. Demirov D. G., Ono A., Orenstein J. M., Freed E. O. 2002; Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A 99:955–960 [View Article][PubMed]
    [Google Scholar]
  15. Emerson S. U., Purcell R. H. 2007; Hepatitis E virus. In Fields Virology, 5th edn. pp. 3047–3058 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  16. Emerson S. U., Nguyen H. T., Torian U., Burke D., Engle R., Purcell R. H. 2010; Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. J Virol 84:9059–9069 [View Article][PubMed]
    [Google Scholar]
  17. Fraile-Ramos A., Pelchen-Matthews A., Risco C., Rejas M. T., Emery V. C., Hassan-Walker A. F., Esteban M., Marsh M. 2007; The ESCRT machinery is not required for human cytomegalovirus envelopment. Cell Microbiol 9:2955–2967 [View Article][PubMed]
    [Google Scholar]
  18. Garrus J. E., von Schwedler U. K., Pornillos O. W., Morham S. G., Zavitz K. H., Wang H. E., Wettstein D. A., Stray K. M., Côté M. et al. other authors 2001; Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65 [View Article][PubMed]
    [Google Scholar]
  19. Göttlinger H. G., Dorfman T., Sodroski J. G., Haseltine W. A. 1991; Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A 88:3195–3199 [View Article][PubMed]
    [Google Scholar]
  20. Graff J., Torian U., Nguyen H., Emerson S. U. 2006; A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. J Virol 80:5919–5926 [View Article][PubMed]
    [Google Scholar]
  21. Haagsma E. B., Riezebos-Brilman A., van den Berg A. P., Porte R. J., Niesters H. G. 2010; Treatment of chronic hepatitis E in liver transplant recipients with pegylated interferon alpha-2b. Liver Transpl 16:474–477[PubMed] [CrossRef]
    [Google Scholar]
  22. Hartlieb B., Weissenhorn W. 2006; Filovirus assembly and budding. Virology 344:64–70 [View Article][PubMed]
    [Google Scholar]
  23. Huang M., Orenstein J. M., Martin M. A., Freed E. O. 1995; p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69:6810–6818[PubMed]
    [Google Scholar]
  24. Ichiyama K., Yamada K., Tanaka T., Nagashima S., Jirintai, Takahashi M., Okamoto H. 2009; Determination of the 5′-terminal sequence of subgenomic RNA of hepatitis E virus strains in cultured cells. Arch Virol 154:1945–1951 [View Article][PubMed]
    [Google Scholar]
  25. Jayakar H. R., Jeetendra E., Whitt M. A. 2004; Rhabdovirus assembly and budding. Virus Res 106:117–132 [View Article][PubMed]
    [Google Scholar]
  26. Jouvenet N., Neil S. J., Zhadina M., Zang T., Kratovac Z., Lee Y., McNatt M., Hatziioannou T., Bieniasz P. D. 2009; Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J Virol 83:1837–1844 [View Article][PubMed]
    [Google Scholar]
  27. Kabrane-Lazizi Y., Meng X. J., Purcell R. H., Emerson S. U. 1999; Evidence that the genomic RNA of hepatitis E virus is capped. J Virol 73:8848–8850[PubMed]
    [Google Scholar]
  28. Kaletsky R. L., Francica J. R., Agrawal-Gamse C., Bates P. 2009; Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A 106:2886–2891 [View Article][PubMed]
    [Google Scholar]
  29. Kamar N., Rostaing L., Abravanel F., Garrouste C., Lhomme S., Esposito L., Basse G., Cointault O., Ribes D. et al. other authors 2010; Ribavirin therapy inhibits viral replication on patients with chronic hepatitis e virus infection. Gastroenterology 139:1612–1618 [View Article][PubMed]
    [Google Scholar]
  30. Katzmann D. J., Babst M., Emr S. D. 2001; Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155 [View Article][PubMed]
    [Google Scholar]
  31. Katzmann D. J., Odorizzi G., Emr S. D. 2002; Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905 [View Article][PubMed]
    [Google Scholar]
  32. Koonin E. V., Gorbalenya A. E., Purdy M. A., Rozanov M. N., Reyes G. R., Bradley D. W. 1992; Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci U S A 89:8259–8263 [View Article][PubMed]
    [Google Scholar]
  33. Lai C. K., Jeng K. S., Machida K., Lai M. M. 2010; Hepatitis C virus egress and release depend on endosomal trafficking of core protein. J Virol 84:11590–11598 [View Article][PubMed]
    [Google Scholar]
  34. Lambert C., Döring T., Prange R. 2007; Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and gamma 2-adaptin. J Virol 81:9050–9060 [View Article][PubMed]
    [Google Scholar]
  35. Mansouri M., Viswanathan K., Douglas J. L., Hines J., Gustin J., Moses A. V., Früh K. 2009; Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi’s sarcoma-associated herpesvirus. J Virol 83:9672–9681 [View Article][PubMed]
    [Google Scholar]
  36. Martin-Serrano J., Zang T., Bieniasz P. D. 2001; HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7:1313–1319 [View Article][PubMed]
    [Google Scholar]
  37. Martin-Serrano J., Yarovoy A., Perez-Caballero D., Bieniasz P. D. 2003a; Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A 100:12414–12419 [View Article][PubMed]
    [Google Scholar]
  38. Martin-Serrano J., Zang T., Bieniasz P. D. 2003b; Role of ESCRT-I in retroviral budding. J Virol 77:4794–4804 [View Article][PubMed]
    [Google Scholar]
  39. Meng X. J. 2011; From barnyard to food table: the omnipresence of hepatitis E virus and risk for zoonotic infection and food safety. Virus Res 161:23–30 [View Article][PubMed]
    [Google Scholar]
  40. Nagashima S., Takahashi M., Jirintai, Tanaka T., Yamada K., Nishizawa T., Okamoto H. 2011; A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells. J Gen Virol 92:269–278 [View Article][PubMed]
    [Google Scholar]
  41. Neil S. J., Zang T., Bieniasz P. D. 2008; Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430 [View Article][PubMed]
    [Google Scholar]
  42. Okamoto H. 2007; Genetic variability and evolution of hepatitis E virus. Virus Res 127:216–228 [View Article][PubMed]
    [Google Scholar]
  43. Pincetic A., Medina G., Carter C., Leis J. 2008; Avian sarcoma virus and human immunodeficiency virus, type 1 use different subsets of ESCRT proteins to facilitate the budding process. J Biol Chem 283:29822–29830 [View Article][PubMed]
    [Google Scholar]
  44. Pornillos O., Alam S. L., Davis D. R., Sundquist W. I. 2002; Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat Struct Biol 9:812–817[PubMed]
    [Google Scholar]
  45. Purcell R. H., Emerson S. U. 2008; Hepatitis E: an emerging awareness of an old disease. J Hepatol 48:494–503 [View Article][PubMed]
    [Google Scholar]
  46. Sakuma T., Noda T., Urata S., Kawaoka Y., Yasuda J. 2009; Inhibition of Lassa and Marburg virus production by tetherin. J Virol 83:2382–2385 [View Article][PubMed]
    [Google Scholar]
  47. Strack B., Calistri A., Craig S., Popova E., Göttlinger H. G. 2003; AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114:689–699 [View Article][PubMed]
    [Google Scholar]
  48. Surjit M., Oberoi R., Kumar R., Lal S. K. 2006; Enhanced alpha1 microglobulin secretion from hepatitis E virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101. J Biol Chem 281:8135–8142 [View Article][PubMed]
    [Google Scholar]
  49. Takahashi M., Hoshino Y., Tanaka T., Takahashi H., Nishizawa T., Okamoto H. 2008a; Production of monoclonal antibodies against hepatitis E virus capsid protein and evaluation of their neutralizing activity in a cell culture system. Arch Virol 153:657–666 [View Article][PubMed]
    [Google Scholar]
  50. Takahashi M., Yamada K., Hoshino Y., Takahashi H., Ichiyama K., Tanaka T., Okamoto H. 2008b; Monoclonal antibodies raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Arch Virol 153:1703–1713 [View Article][PubMed]
    [Google Scholar]
  51. Takahashi M., Tanaka T., Takahashi H., Hoshino Y., Nagashima S., Jirintai, Mizuo H., Yazaki Y., Takagi T. et al. other authors 2010; Hepatitis E Virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. J Clin Microbiol 48:1112–1125 [View Article][PubMed]
    [Google Scholar]
  52. Tam A. W., Smith M. M., Guerra M. E., Huang C. C., Bradley D. W., Fry K. E., Reyes G. R. 1991; Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology 185:120–131 [View Article][PubMed]
    [Google Scholar]
  53. Tanaka T., Takahashi M., Kusano E., Okamoto H. 2007; Development and evaluation of an efficient cell-culture system for hepatitis E virus. J Gen Virol 88:903–911 [View Article][PubMed]
    [Google Scholar]
  54. Tanzi G. O., Piefer A. J., Bates P. 2003; Equine infectious anemia virus utilizes host vesicular protein sorting machinery during particle release. J Virol 77:8440–8447 [View Article][PubMed]
    [Google Scholar]
  55. Tei S., Kitajima N., Takahashi K., Mishiro S. 2003; Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet 362:371–373 [View Article][PubMed]
    [Google Scholar]
  56. Urata S., Noda T., Kawaoka Y., Yokosawa H., Yasuda J. 2006; Cellular factors required for Lassa virus budding. J Virol 80:4191–4195 [View Article][PubMed]
    [Google Scholar]
  57. Urata S., Yokosawa H., Yasuda J. 2007; Regulation of HTLV-1 Gag budding by Vps4A, Vps4B, and AIP1/Alix. Virol J 4:66 [View Article][PubMed]
    [Google Scholar]
  58. Van Damme N., Goff D., Katsura C., Jorgenson R. L., Mitchell R., Johnson M. C., Stephens E. B., Guatelli J. 2008; The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:245–252 [View Article][PubMed]
    [Google Scholar]
  59. VerPlank L., Bouamr F., LaGrassa T. J., Agresta B., Kikonyogo A., Leis J., Carter C. A. 2001; Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci U S A 98:7724–7729 [View Article][PubMed]
    [Google Scholar]
  60. von Schwedler U. K., Stuchell M., Müller B., Ward D. M., Chung H. Y., Morita E., Wang H. E., Davis T., He G. P. et al. other authors 2003; The protein network of HIV budding. Cell 114:701–713 [View Article][PubMed]
    [Google Scholar]
  61. Watanabe T., Sorensen E. M., Naito A., Schott M., Kim S., Ahlquist P. 2007; Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci U S A 104:10205–10210 [View Article][PubMed]
    [Google Scholar]
  62. Wills J. W., Craven R. C. 1991; Form, function, and use of retroviral gag proteins. AIDS 5:639–654 [View Article][PubMed]
    [Google Scholar]
  63. Yamada K., Takahashi M., Hoshino Y., Takahashi H., Ichiyama K., Nagashima S., Tanaka T., Okamoto H. 2009a; ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J Gen Virol 90:1880–1891 [View Article][PubMed]
    [Google Scholar]
  64. Yamada K., Takahashi M., Hoshino Y., Takahashi H., Ichiyama K., Tanaka T., Okamoto H. 2009b; Construction of an infectious cDNA clone of hepatitis E virus strain JE03-1760F that can propagate efficiently in cultured cells. J Gen Virol 90:457–462 [View Article][PubMed]
    [Google Scholar]
  65. Yasuda J., Hunter E. 1998; A proline-rich motif (PPPY) in the Gag polyprotein of Mason-Pfizer monkey virus plays a maturation-independent role in virion release. J Virol 72:4095–4103[PubMed]
    [Google Scholar]
  66. Yasuda J., Nakao M., Kawaoka Y., Shida H. 2003; Nedd4 regulates egress of Ebola virus-like particles from host cells. J Virol 77:9987–9992 [View Article][PubMed]
    [Google Scholar]
  67. Yazaki Y., Mizuo H., Takahashi M., Nishizawa T., Sasaki N., Gotanda Y., Okamoto H. 2003; Sporadic acute or fulminant hepatitis E in Hokkaido, Japan, may be food-borne, as suggested by the presence of hepatitis E virus in pig liver as food. J Gen Virol 84:2351–2357 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.035378-0
Loading
/content/journal/jgv/10.1099/vir.0.035378-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error