1887

Abstract

The genes are located upstream of the gene cluster encoding the sulfur-oxidizing ability of . SoxV is highly homologous to CcdA, which is involved in cytochrome maturation of . SoxV was shown to function in reduction of the periplasmic SoxW, which shows a CysXaaXaaCys motif characteristic for thioredoxins. From strain GBΩV, which carries an Ω-kanamycin-resistance-encoding interposon in , and complementation analysis it was evident that SoxV but not the periplasmic SoxW was essential for lithoautotrophic growth of with thiosulfate. However, the thiosulfate-oxidizing activities of cell extracts from the wild-type and from strain GBΩV were similar, demonstrating that the low thiosulfate-oxidizing activity of strain GBΩV was not due to a defect in biosynthesis or maturation of proteins of the Sox system and suggesting that SoxV is part of a regulatory or catalytic system of the Sox system. Analysis of DNA sequences available from different organisms harbouring a Sox system revealed that genes are exclusively present in operons harbouring the genes, encoding sulfur dehydrogenase, suggesting that SoxCD might be a redox partner of SoxV. No complementation of the mutant TP43 defective in cytochrome maturation was achieved by expression of , demonstrating that the high identity of SoxV and CcdA does not correspond to functional homology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28523-0
2006-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/465.html?itemId=/content/journal/micro/10.1099/mic.0.28523-0&mimeType=html&fmt=ahah

References

  1. Akyama Y, Ito K. 1993; Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo . J Biol Chem 268:8146–8150
    [Google Scholar]
  2. Altenbuchner J, Viell P, Pelletier I. 1992; Positive selection vector based on palindromic DNA sequences. Methods Enzymol 216:457–566
    [Google Scholar]
  3. Appia-Ayme C, Berks B. C. 2002; SoxV, an orthologue of the CcdA disulfide transporter, is involved in thiosulfate oxidation in Rhodovulum sulfidophilum and reduces the periplasmic thioredoxin SoxW. Biochem Biophys Res Commun 296:737–741 [CrossRef]
    [Google Scholar]
  4. Bardischewsky F, Friedrich C. G. 2001a; Identification of ccdA in Paracoccus pantotrophus GB17: disruption of ccdA causes complete deficiency in c -type cytochromes. J Bacteriol 183:257–263 [CrossRef]
    [Google Scholar]
  5. Bardischewsky F, Friedrich C. G. 2001b; The shxVW locus is essential for oxidation of inorganic sulfur and molecular hydrogen by Paracoccus pantotrophus GB17: a novel function for lithotrophy. FEMS Microbiol Lett 202:215–220 [CrossRef]
    [Google Scholar]
  6. Bardischewsky F, Quentmeier A, Hellwig P, Kostka S, Friedrich C. G. 2005; Sulfur dehydrogenase of Paracoccus pantotrophus : the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity. Biochemistry 44:7024–7034 [CrossRef]
    [Google Scholar]
  7. Bardwell J. C, Lee J.-O, Jander G, Martin N, Belin D, Beckwith J. 1993; A pathway for disulfide bond formation in vivo . Proc Natl Acad Sci U S A 90:1038–1042 [CrossRef]
    [Google Scholar]
  8. Birnboim H. C, Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  9. Boschi-Muller S, Azza S, Sanglier-Cianferani S, Talfournier F, van Dorsselear A, Branlant G. 2000; A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli . J Biol Chem 275:35908–35913 [CrossRef]
    [Google Scholar]
  10. Bowien B, Mayer F, Codd G. A, Schlegel H. G. 1976; Purification, some properties, and quarternary structure of the d-ribulose 1,5-diphosphate carboxylase of Alcaligenes eutrophus . Arch Microbiol 110:157–167 [CrossRef]
    [Google Scholar]
  11. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  12. Bullock W. O, Fernandez J. M, Short J. M. 1987; XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strains with beta-galactosidase selection. BioTechniques 5:376–378
    [Google Scholar]
  13. Chandra T. S, Friedrich C. G. 1986; Tn 5 -induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha . J Bacteriol 166:446–452
    [Google Scholar]
  14. Chung J, Chen T, Missiakas D. 2000; Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm. Mol Microbiol 35:1099–1109 [CrossRef]
    [Google Scholar]
  15. Crooke H, Cole J. 1995; The biogenesis of c -type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol Microbiol 15:1139–1150 [CrossRef]
    [Google Scholar]
  16. Fabianek R. A, Hennecke H, Thöny-Meyer L. 2000; Periplasmic protein thiol : disulfide oxidoreductases of Escherichia coli . FEMS Microbiol Rev 24:303–316 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. 1989; phylip – Phylogeny Inference Package, version 3.2. Cladistics 5:164–166
    [Google Scholar]
  18. Friedrich C. G, Bardischewsky F, Rother D, Quentmeier A, Fischer J. 2005; Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259 [CrossRef]
    [Google Scholar]
  19. Gutierrez C, Devedijian J. C. 1989; A plasmid faciliating in vitro construction of phoA gene in Escherichia coli . Nucleic Acids Res 17:3999 [CrossRef]
    [Google Scholar]
  20. Katzen F, Beckwith J. 2000; Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103:769–779 [CrossRef]
    [Google Scholar]
  21. Katzen F, Deshmukh M, Daldal F, Beckwith J. 2002; Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 21:3960–3969 [CrossRef]
    [Google Scholar]
  22. Kobayashi T, Kishigami S, Sone M, Inokuchi H, Mogi T, Ito K. 1997; Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc Natl Acad Sci U S A 94:11857–11862 [CrossRef]
    [Google Scholar]
  23. Lillig C. H, Prior A, Schwenn J. D, Aslund F, Ritz D, Vlamis-Gardikas A, Holmgren A. 1999; New thioredoxins and glutaredoxins as electron donors of 3′-phosphoadenylsulfate reductase. J Biol Chem 274:7695–7698 [CrossRef]
    [Google Scholar]
  24. Lowther W. T, Brot N, Weissbach H, Matthews B. W. 2000; Structure and mechanism of peptide methionine sulfoxide reductase, an “anti-oxidation” enzyme. Biochemistry 39:13307–13312 [CrossRef]
    [Google Scholar]
  25. Martin J. L. 1995; Thioredoxin – a fold for all reasons. Structure 3:245–250 [CrossRef]
    [Google Scholar]
  26. Missiakis D, Raina S. 1997; Protein folding in the bacterial periplasm. J Bacteriol 179:2465–2471
    [Google Scholar]
  27. Okamoto K, Baba T, Yamanaka H, Akashi N, Fujii Y. 1995; Disulfide bond formation and secretion of Escherichia coli heat stable enterotoxin II. J Bacteriol 177:4579–4586
    [Google Scholar]
  28. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  29. Pfitzner U, Odenwald A, Ostermann T, Weingard L, Ludwig B, Richter O. M. 1998; Cytochrome c oxidase (heme aa [sub]3[/sub]) from Paracoccus denitrificans : analysis of mutations in putative proton channels of subunit I. J Bioenerg Biomembr 30:83–97
    [Google Scholar]
  30. Quentmeier A, Kraft R, Kostka S, Friedrich C. G, Klockenkämper R. 2000; Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Arch Microbiol 173:117–125 [CrossRef]
    [Google Scholar]
  31. Rainey F. A, Kelly D. P, Stackebrandt E, Burghardt J, Hiraishi A, Katayama Y, Wood A. P. 1999; A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol 49:645–651 [CrossRef]
    [Google Scholar]
  32. Rietsch A, Bessette P, Georgiou G, Beckwith J. 1997; Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol 179:6602–6608
    [Google Scholar]
  33. Ritz D, Beckwith J. 2001; Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21–48 [CrossRef]
    [Google Scholar]
  34. Robertson L. A, Kuenen J. G. 1983; Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultative autotrophic sulphur bacterium. J Gen Microbiol 129:2847–2855
    [Google Scholar]
  35. Rother D, Orawski G, Bardischewsky F, Friedrich C. G. 2005; SoxRS-mediated regulation of chemotrophic sulfur oxidation in Paracoccus pantotrophus . Microbiology 151:1707–1716 [CrossRef]
    [Google Scholar]
  36. Sambongi Y, Ferguson S. J. 1994; Specific thiol compounds complement deficiency in c -type cytochrome biogenesis in Escherichia coli carrying a mutation in a membrane-bound disulphide isomerase-like protein. FEBS Lett 353:235–238 [CrossRef]
    [Google Scholar]
  37. Sambongi Y, Ferguson S. J. 1996; Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c -type cytochrome except in the presence of disulphide compounds. FEBS Lett 398:265–268 [CrossRef]
    [Google Scholar]
  38. Sambrook J, Maniatis T, Fritsch E. F. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schiött T, von Wachenfeldt C., Hederstedt L. 1997; Identification and characterization of the ccdA gene, required for cytochrome c synthesis in Bacillus subtilis . J Bacteriol 179:1962–1973
    [Google Scholar]
  40. Shi J, Vlamis-Gardikas A, Holmgrens A, Rosen B. P, Åslund F. 1999; Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem 274:36039–36042 [CrossRef]
    [Google Scholar]
  41. Simon R, Priefer U, Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–790 [CrossRef]
    [Google Scholar]
  42. Sørbø B. 1957; A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta 23:412–416 [CrossRef]
    [Google Scholar]
  43. Stewart E. J, Katzen F, Beckwith J. 1999; Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli . EMBO J 18:5963–5971 [CrossRef]
    [Google Scholar]
  44. Thompson J. D, Higgins D. G, Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  45. Thöny-Meyer L. 1997; Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61:337–376
    [Google Scholar]
  46. Towbin H, Staehelin T, Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [CrossRef]
    [Google Scholar]
  47. Wodara C, Bardischewsky F, Friedrich C. G. 1997; Cloning and characterization of sulfite dehydrogenase, two c -type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J Bacteriol 179:5014–5023
    [Google Scholar]
  48. Yamanaka H, Kameyama M, Baba T, Fujii Y, Okamoto K. 1994; Maturation pathway of Escherichia coli heat stable enterotoxin I: requirement of DsbA for disulphide bond formation. J Bacteriol 176:2906–2913
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28523-0
Loading
/content/journal/micro/10.1099/mic.0.28523-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error