1887

Abstract

The opportunistic bacterium C5424 contains two catalase/peroxidase genes, and . To investigate the functions of these genes, and mutants were generated by targeted integration of suicide plasmids into the and genes. The catalase/peroxidase activity of the mutant was not affected as compared with that of the parental strain, while no catalase/peroxidase activity was detected in the mutant. However, the mutant displayed reduced resistance to hydrogen peroxide under iron limitation, while the mutant showed hypersensitivity to hydrogen peroxide, and reduced growth under all conditions tested. The mutant displayed reduced growth only in the presence of carbon sources that are metabolized through the tricarboxylic acid (TCA) cycle, as the growth defect was abrogated in cultures supplemented with glucose or glycerol. This phenotype was also correlated with a marked reduction in aconitase activity. In contrast, aconitase activity was not reduced in the mutant and parental strains. The authors conclude that the KatA protein is a specialized catalase/peroxidase that has a novel function by contributing to maintain the normal activity of the TCA cycle, while KatB is a classical catalase/peroxidase that plays a global role in cellular protection against oxidative stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27704-0
2005-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511975.html?itemId=/content/journal/micro/10.1099/mic.0.27704-0&mimeType=html&fmt=ahah

References

  1. Bals R., Weiner D. J., Wilson J. M. 1999; The innate immune system in cystic fibrosis lung disease. J Clin Invest 103:303–307 [CrossRef]
    [Google Scholar]
  2. Bandyopadhyay P., Steinman H. M. 1998; Legionella pneumophila catalase-peroxidases: cloning of the katB gene and studies of KatB function. J Bacteriol 180:5369–5374
    [Google Scholar]
  3. Bandyopadhyay P., Steinman H. M. 2000; Catalase-peroxidases of Legionella pneumophila: cloning of the katA gene and studies of KatA function. J Bacteriol 182:6679–6686 [CrossRef]
    [Google Scholar]
  4. Bandyopadhyay P., Byrne B., Chan Y., Swanson M. S., Steinman H. M. 2003; Legionella pneumophila catalase-peroxidases are required for proper trafficking and growth in primary macrophages. Infect Immun 71:4526–4535 [CrossRef]
    [Google Scholar]
  5. Brown S. M., Howell M. L., Vasil M. L., Anderson A. J., Hassett D. J. 1995; Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J Bacteriol 177:6536–6544
    [Google Scholar]
  6. Cline M. J. 1975 The White Cell Cambridge, MA: Harvard University Press;
    [Google Scholar]
  7. Coenye T., Vandamme P. 2003; Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729 [CrossRef]
    [Google Scholar]
  8. Cohen S. N., Chang A. C., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114 [CrossRef]
    [Google Scholar]
  9. Craig F. F., Coote J. G., Parton R., Freer J. H., Gilmour N. J. 1989; A plasmid which can be transferred between Escherichia coli and Pasteurella haemolytica by electroporation and conjugation. J Gen Microbiol 135:2885–2890
    [Google Scholar]
  10. Cunningham L., Gruer M. J., Guest J. R. 1997; Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology 143:3795–3805 [CrossRef]
    [Google Scholar]
  11. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652 [CrossRef]
    [Google Scholar]
  12. Fridovich I. 1978; The biology of oxygen radicals. Science 201:875–880 [CrossRef]
    [Google Scholar]
  13. Govan J. R. W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  14. Govan J. R., Vandamme P. 1998; Agricultural and medical microbiology: a time for bridging gaps. Microbiology 144:2373–2375 [CrossRef]
    [Google Scholar]
  15. Govan J. R., Hughes J. E., Vandamme P. 1996; Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 45:395–407 [CrossRef]
    [Google Scholar]
  16. Gruer M. J., Guest J. R. 1994; Two genetically distinct and differentially regulated aconitases (acnA and acnB) inEscherichia coli . Microbiology 140:2531–2541 [CrossRef]
    [Google Scholar]
  17. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  18. Imlay J. A., Linn S. 1988; DNA damage and oxygen radical toxicity. Science 240:1302–1309 [CrossRef]
    [Google Scholar]
  19. Katsuwon J., Anderson A. J. 1992; Characterization of catalase activities in a root-colonizing isolate of Pseudomonas putida . Can J Microbiol 38:1026–1032 [CrossRef]
    [Google Scholar]
  20. Lamothe J., Thyssen S., Valvano M. A. 2004; Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles ofAcanthamoeba polyphaga . Cell Microbiol 6:1127–1138 [CrossRef]
    [Google Scholar]
  21. Lefebre M. D., Valvano M. A. 2001; Catalases and superoxide dismutases in strains of the Burkholderia cepacia complex and their roles in resistance to reactive oxygen species. Microbiology 147:97–109
    [Google Scholar]
  22. Lefebre M. D., Valvano M. A. 2002; Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates. Appl Environ Microbiol 68:5956–5964 [CrossRef]
    [Google Scholar]
  23. Loewen P. C., Triggs B. L., George C. S., Hrabarchuk B. E. 1985; Genetic mapping of katG, a locus that affects synthesis of the bifunctional catalase-peroxidase hydroperoxidase I inEscherichia coli . J Bacteriol 162:661–667
    [Google Scholar]
  24. Loprasert S., Sallabhan R., Whangsuk W., Mongkolsuk S. 2002; The Burkholderia pseudomallei oxyR gene: expression analysis and mutant characterization. Gene 296:161–169 [CrossRef]
    [Google Scholar]
  25. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P. 2000; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913
    [Google Scholar]
  26. Marolda C. L., John M. A., Michel R., Valvano M. A, Hauröder B. 1999; Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145:1509–1517 [CrossRef]
    [Google Scholar]
  27. Messner K. R., Imlay J. A. 1999; The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli . J Biol Chem 274:10119–10128 [CrossRef]
    [Google Scholar]
  28. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  29. Oexle H., Gnaiger E., Weiss G. 1999; Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. Biochim Biophys Acta 141399–107 [CrossRef]
    [Google Scholar]
  30. Rava P. S., Somma L., Steinman H. M. 1999; Identification of a regulator that controls stationary-phase expression of catalase-peroxidase in Caulobacter crescentus . J Bacteriol 181:6152–6159
    [Google Scholar]
  31. Saini L., Galsworthy S., John M., Valvano M. A. 1999; Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology 145:3465–3475
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1990 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering transposon mutagenesis in gram-negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  34. Speert D. P., Bond M., Woodman R. C., Curnutte J. T. 1994; Infection with Pseudomonas cepacia in chronic granulomatous disease: role of non-oxidative killing by neutrophils in host defense. J Infect Dis 170:1524–1531 [CrossRef]
    [Google Scholar]
  35. Speert D. P., Henry D., Vandamme P., Corey M., Mahenthiralingam E. 2002; Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8:181–187 [CrossRef]
    [Google Scholar]
  36. Steinman H. M., Fareed F., Weinstein L. 1997; Catalase-peroxidase of Caulobacter crescentus: function and role in stationary-phase survival. J Bacteriol 179:6831–6836
    [Google Scholar]
  37. Storz G., Imlay J. A. 1999; Oxidative stress. Curr Opin Microbiol 2:188–194 [CrossRef]
    [Google Scholar]
  38. Switala J., Loewen P. C. 2002; Diversity of properties among catalases. Arch Biochem Biophys 401:145–154 [CrossRef]
    [Google Scholar]
  39. Tablan O. C., Chroba T. L., Schidlow D. V. & 7 other authors; 1985; Pseudomonas cepacia colonization in patients with cystic fibrosis: risk factors and clinical outcome. J Pediatr 107:382–387 [CrossRef]
    [Google Scholar]
  40. Tummler B., Kiewitz C. 1999; Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol Med Today 5:351–358 [CrossRef]
    [Google Scholar]
  41. Valvano M. A., Keith K. E., Cardona S. T. 2005; Survival and persistence of opportunistic Burkholderia species in host cells. Curr Opin Microbiol 8:99–105 [CrossRef]
    [Google Scholar]
  42. Varghese S., Tang Y., Imlay J. A. 2003; Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol 185:221–230 [CrossRef]
    [Google Scholar]
  43. Xu X. Q., Pan S. Q. 2000; An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Mol Microbiol 35:407–414 [CrossRef]
    [Google Scholar]
  44. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  45. Zamocky M., Koller F. 1999; Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 72:19–66 [CrossRef]
    [Google Scholar]
  46. Zamocky M., Janecek S., Koller F. 2000; Common phylogeny of catalase-peroxidases and ascorbate peroxidases. Gene 256:169–182 [CrossRef]
    [Google Scholar]
  47. Zheng M., Storz G. 2000; Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59:1–6 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27704-0
Loading
/content/journal/micro/10.1099/mic.0.27704-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error