1887

Abstract

A new insertion sequence from ATCC 14999 was isolated and characterized. This IS element, designated IS, comprised a 1149 bp nucleotide sequence with 22 bp imperfect terminal inverted repeats. IS carries a single open reading frame of 345 amino acids encoding a putative transposase that appears to have partial homology to IS, an IS/Tc superfamily element, at the C-terminal region in the amino acid sequence. This indicated that IS belonged to the IS/Tc superfamily, which was first identified in . IS has a unique distance of 38 amino acid residues between the second and third amino acids in the DDE motif, which is well known as the catalytic centre of transposase. This suggested that IS constituted a new subfamily of the IS/Tc superfamily. A phylogenetic tree constructed on the basis of amino acid sequences of transposases revealed that this new transposable element was more similar to eukaryotic Tc/ family elements than to prokaryotic IS family elements. Added to the fact that IS was present in only a few strains, this implies that IS was probably acquired by a recent lateral transfer event from eukaryotic cells. Analysis of the insertion site in R revealed that IS appeared to transpose at random and always caused a target duplication of a 5′-TA-3′ dinucleotide upon insertion, like the other IS/Tc family elements. These findings indicated that IS could be a powerful tool for genetic manipulation of corynebacteria and related species.

Keyword(s): IR, inverted repeat
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27567-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510501.html?itemId=/content/journal/micro/10.1099/mic.0.27567-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Bonamy C., Labarre J., Reyes O., Leblon G. 1994; Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis. Mol Microbiol 14:571–581 [CrossRef]
    [Google Scholar]
  3. Bonamy C., Labarre J., Cazaubon L., Jacob C., Le Bohec F., Reyes O., Leblon G. 2003; The mobile element IS1207 of Brevibacterium lactofermentum ATCC21086: isolation and use in the construction of Tn5531, a versatile transposon for insertional mutagenesis ofCorynebacterium glutamicum . J Biotechnol 104:301–309 [CrossRef]
    [Google Scholar]
  4. Craig N. L. 1997; Target site selection in transposition. Annu Rev Biochem 66:37–74
    [Google Scholar]
  5. de Graaf A. A., Eggeling L., Sahm H. 2001; Metabolic engineering for l-lysine production by Corynebacterium glutamicum . Adv Biochem Eng Biotechnol 73:9–29
    [Google Scholar]
  6. Doak T. G., Doerder F. P., Jahn C. L., Herrick G. 1994; A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci U S A 91:942–946 [CrossRef]
    [Google Scholar]
  7. Hermann T. 2003; Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172 [CrossRef]
    [Google Scholar]
  8. Hutchison C. A., Peterson S. N., Gill S. R., Cline R. T., White O., Fraser C. M., Smith H. O., Venter J. C. 1999; Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169 [CrossRef]
    [Google Scholar]
  9. Ikeda M., Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109 [CrossRef]
    [Google Scholar]
  10. Jager W., Schafer A., Puhler A., Labes G., Wohlleben W. 1992; Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacteriumCorynebacterium glutamicum but not in Streptomyces lividans . J Bacteriol 174:5462–5465
    [Google Scholar]
  11. Jager W., Schafer A., Kalinowski J., Puhler A. 1995; Isolation of insertion elements from gram-positive Brevibacterium, Corynebacterium and Rhodococcusstrains using the Bacillus subtilis sacB gene as a positive selection marker. FEMS Microbiol Lett 126:1–6 [CrossRef]
    [Google Scholar]
  12. Kalinowski J., Bathe B., Bartels D. & 24 other authors; 2003; The complete Corynebacterium glutamicum ATCC13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 [CrossRef]
    [Google Scholar]
  13. Kinoshita S., Udaka S., Shimono M. 1957; Studies on the amino acid fermentation: part I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205 [CrossRef]
    [Google Scholar]
  14. Korswagen H. C., Durbin R. M., Smits M. T., Plasterk R. H. 1996; Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc Natl Acad Sci U S A 93:14680–14685 [CrossRef]
    [Google Scholar]
  15. Kotrba P., Inui M., Yukawa H. 2001; The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem Biophys Res Commun 289:1307–1313 [CrossRef]
    [Google Scholar]
  16. Kurusu Y., Kainuma M., Inui M., Satoh Y., Yukawa H. 1990; Electroporation-transformation system for coryneform bacteria by auxotrophic complementation. Agric Biol Chem 54:443–447 [CrossRef]
    [Google Scholar]
  17. Lohe A. R., De Aguiar D., Hartl D. L. 1997; Mutations in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. Proc Natl Acad Sci U S A 94:1293–1297 [CrossRef]
    [Google Scholar]
  18. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774
    [Google Scholar]
  19. Mori I., Benian G. M., Moerman D. G., Waterston R. H. 1988; Transposable element Tc1 of Caenorhabditis elegans recognizes specific target sequences for integration. Proc Natl Acad Sci U S A 85:861–864 [CrossRef]
    [Google Scholar]
  20. Nishio Y., Nakamura Y., Kawarabayasi Y. 8 other authors 2003; Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens . Genome Res 13:1572–1579 [CrossRef]
    [Google Scholar]
  21. Ohnishi J., Hayashi M., Mitsuhashi S., Ikeda M. 2003; Efficient 40 degrees C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75 [CrossRef]
    [Google Scholar]
  22. Ohtsubo F., Sekine Y. 1996; Bacterial insertion sequences. Curr Top Microbiol Immunol 204:1–26
    [Google Scholar]
  23. Pelicic V., Reyrat J. M., Gicquel B. 1996; Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178:1197–1199
    [Google Scholar]
  24. Plasterk R. H. 1996; The Tc1/mariner transposon family. Curr Top Microbiol Immunol 204:125–143
    [Google Scholar]
  25. Plasterk R. H., Izsvak Z., Ivics Z. 1999; Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15:326–332 [CrossRef]
    [Google Scholar]
  26. Preclin V., Martin E., Segalat L. 2003; Target sequences of Tc1, Tc3 and Tc5 transposons of Caenorhabditis elegans. Genet Res 82:85–88 [CrossRef]
    [Google Scholar]
  27. Puech V., Chami M., Lemassu A., Schiffler B., Gounon P., Bayan N., Benz R, Lanéelle M. A., Daffé M. 2001; Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382
    [Google Scholar]
  28. Sahm H., Eggeling L., Eikmanns B., Kramer R. 1996; Construction of l-lysine-, l-threonine-, and l-isoleucine-overproducing strains of Corynebacterium glutamicum . Ann N Y Acad Sci 782:25–39 [CrossRef]
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  30. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  32. Shao H., Tu Z. 2001; Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159:1103–1115
    [Google Scholar]
  33. Taylor L. A., Rose R. E. 1988; A correction in the nucleotide sequence of the Tn903 kanamycin resistance determinant in pUC4K. Nucleic Acids Res 16:358 [CrossRef]
    [Google Scholar]
  34. Tenzen T., Matsutani S., Ohtsubo E. 1990; Site-specific transposition of insertion sequence IS630. J Bacteriol 172:3830–3836
    [Google Scholar]
  35. Tenzen T., Ohtsubo E. 1991; Preferential transposition of an IS630-associated composite transposon to TA in the 5′-CTAG-3′ sequence. J Bacteriol 173:6207–6212
    [Google Scholar]
  36. Terasawa M., Inui M., Goto M., Shikata K., Imanari M., Yukawa H. 1990; Living cell reaction process for l-isoleucine and l-valine production. J Ind Microbiol 5:289–294 [CrossRef]
    [Google Scholar]
  37. Urasaki A., Sekine Y., Ohtsubo E. 2002; Transposition of Cyanobacterium insertion element ISY100 inEscherichia coli . J Bacteriol 184:5104–5112 [CrossRef]
    [Google Scholar]
  38. Vertès A. A., Inui M., Kobayashi M., Kurusu Y., Yukawa H. 1993; Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144:181–185 [CrossRef]
    [Google Scholar]
  39. Vertès A. A., Inui M., Kobayashi M., Kurusu Y., Yukawa H. 1994a; Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum. Mol Microbiol 11:739–746 [CrossRef]
    [Google Scholar]
  40. Vertès A. A., Asai Y., Inui M., Kobayashi M., Kurusu Y., Yukawa H. 1994b; Transposon mutagenesis of coryneform bacteria. Mol Gen Genet 245:397–405 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27567-0
Loading
/content/journal/micro/10.1099/mic.0.27567-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error