1887

Abstract

Cisplatin is commonly used in cancer therapy and yeast cells are also sensitive to this compound. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin treatment, which are dependent on or independent of function – a gene whose deletion increases resistance to the drug. Gene expression changes produced by addition of cisplatin to W303 and W303-Δ cells were recorded using DNA microarrays. The data, validated by quantitative PCR, revealed 122 differentially expressed genes: 69 upregulated and 53 downregulated. Among the upregulated genes, those related to sulfur metabolism were over-represented and partially dependent on Sky1. Deletions of or other genes encoding co-regulators of the expression of sulfur-metabolism-related genes, with the exception of , did not modify the cisplatin sensitivity of yeast cells. One of the genes with the highest cisplatin-induced upregulation was , encoding a putative permease of sulfur compounds. We also measured the platinum, sulfur and glutathione content in W303, W303-Δ and W303-Δ cells after cisplatin treatment, and integration of the data suggested that these transcriptional changes might represent a cellular response that allowed chelation of cisplatin with sulfur-containing amino acids and also helped DNA repair by stimulating purine biosynthesis. The transcription pattern of stimulation of sulfur-containing amino acids and purine synthesis decreased, or even disappeared, in the W303-Δ strain.

Funding
This study was supported by the:
  • MICINN (Spain) co-financed by FEDER (CEE) (Award BFU2009-08854)
  • Xunta de Galicia (Award D.O.G. 10-10-2012. EN: 2012/118 and D.O.G. 3-12-2008 EN: 2008/008)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078402-0
2014-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1357.html?itemId=/content/journal/micro/10.1099/mic.0.078402-0&mimeType=html&fmt=ahah

References

  1. Basu A., Krishnamurthy S. ( 2010). Cellular responses to cisplatin-induced DNA damage. J Nucleic Acids 2010:1–16 [View Article][PubMed]
    [Google Scholar]
  2. Benjamini Y., Hochberg Y. ( 1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300
    [Google Scholar]
  3. Berners-Price S. J., Kuchel P. W. ( 1990). Reaction of cis- and trans-[PtCl2(NH3)2] with reduced glutathione inside human red blood cells, studied by 1H and 15N-{1H} DEPT NMR. J Inorg Biochem 38:327–345 [View Article][PubMed]
    [Google Scholar]
  4. Birrell G. W., Brown J. A., Wu H. I., Giaever G., Chu A. M., Davis R. W., Brown J. M. ( 2002). Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci U S A 99:8778–8783 [View Article][PubMed]
    [Google Scholar]
  5. Blaiseau P. L., Isnard A. D., Surdin-Kerjan Y., Thomas D. ( 1997). Met31p and Met32p, two related zinc finger proteins, are involved in transcriptional regulation of yeast sulfur amino acid metabolism. Mol Cell Biol 17:3640–3648[PubMed]
    [Google Scholar]
  6. Boubakari B. K., Bracht K., Neumann C., Grünert R., Bednarski P. J. ( 2004). No correlation between GSH levels in human cancer cell lines and the cell growth inhibitory activities of platinum diamine complexes. Arch Pharm (Weinheim) 337:668–671 [View Article][PubMed]
    [Google Scholar]
  7. Bracht K., Boubakari, Grünert R., Bednarski P. J. ( 2006). Correlations between the activities of 19 anti-tumor agents and the intracellular glutathione concentrations in a panel of 14 human cancer cell lines: comparisons with the National Cancer Institute data. Anticancer Drugs 17:41–51 [View Article][PubMed]
    [Google Scholar]
  8. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  9. Burger H., Capello A., Schenk P. W., Stoter G., Brouwer J., Nooter K. ( 2000). A genome-wide screening in Saccharomyces cerevisiae for genes that confer resistance to the anticancer agent cisplatin. Biochem Biophys Res Commun 269:767–774 [View Article][PubMed]
    [Google Scholar]
  10. Caba E., Dickinson D. A., Warnes G. R., Aubrecht J. ( 2005). Differentiating mechanisms of toxicity using global gene expression analysis in Saccharomyces cerevisiae. Mutat Res 575:34–46 [View Article][PubMed]
    [Google Scholar]
  11. Cavill R., Kamburov A., Ellis J. K., Athersuch T. J., Blagrove M. S., Herwig R., Ebbels T. M., Keun H. C. ( 2011). Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol 7:e1001113 [View Article][PubMed]
    [Google Scholar]
  12. Dagher S. F., Fu X. D. ( 2001). Evidence for a role of Sky1p-mediated phosphorylation in 3′ splice site recognition involving both Prp8 and Prp17/Slu4. RNA 7:1284–1297 [View Article][PubMed]
    [Google Scholar]
  13. Denis V., Daignan-Fornier B. ( 1998). Synthesis of glutamine, glycine and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae. Mol Gen Genet 259:246–255 [View Article][PubMed]
    [Google Scholar]
  14. Fauchon M., Lagniel G., Aude J. C., Lombardía L., Soularue P., Petat C., Marguerie G., Sentenac A., Werner M., Labarre J. ( 2002). Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 9:713–723 [View Article][PubMed]
    [Google Scholar]
  15. Fuertes M. A., Castilla J., Alonso C., Pérez J. M. ( 2003). Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem 10:257–266 [View Article][PubMed]
    [Google Scholar]
  16. Gietz R. D., Akio S. ( 1988). New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534 [View Article][PubMed]
    [Google Scholar]
  17. Gilbert W., Siebel C. W., Guthrie C. ( 2001). Phosphorylation by Sky1p promotes Npl3p shuttling and mRNA dissociation. RNA 7:302–313 [View Article][PubMed]
    [Google Scholar]
  18. Godwin A. K., Meister A., O’Dwyer P. J., Huang C. S., Hamilton T. C., Anderson M. E. ( 1992). High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A 89:3070–3074 [View Article][PubMed]
    [Google Scholar]
  19. Hoffman C. S., Winston F. ( 1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272 [View Article][PubMed]
    [Google Scholar]
  20. Huang R. Y., Eddy M., Vujcic M., Kowalski D. ( 2005). Genome-wide screen identifies genes whose inactivation confer resistance to cisplatin in Saccharomyces cerevisiae. Cancer Res 65:5890–5897 [View Article][PubMed]
    [Google Scholar]
  21. Ishida S., Lee J., Thiele D. J., Herskowitz I. ( 2002). Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 99:14298–14302 [View Article][PubMed]
    [Google Scholar]
  22. Isnard A. D., Thomas D., Surdin-Kerjan Y. ( 1996). The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J Mol Biol 262:473–484 [View Article][PubMed]
    [Google Scholar]
  23. Jin Y. H., Dunlap P. E., McBride S. J., Al-Refai H., Bushel P. R., Freedman J. H. ( 2008). Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS Genet 4:e1000053 [View Article][PubMed]
    [Google Scholar]
  24. Jordan P., Carmo-Fonseca M. ( 1998). Cisplatin inhibits synthesis of ribosomal RNA in vivo. Nucleic Acids Res 26:2831–2836 [View Article][PubMed]
    [Google Scholar]
  25. Kasherman Y., Sturup S., Gibson D. ( 2009). Is glutathione the major cellular target of cisplatin? A study of the interactions of cisplatin with cancer cell extracts. J Med Chem 52:4319–4328 [View Article][PubMed]
    [Google Scholar]
  26. Kim H. K., Choi I. J., Kim C. G., Kim H. S., Oshima A., Michalowski A., Green J. E. ( 2011). A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PLoS ONE 6:e16694 [View Article][PubMed]
    [Google Scholar]
  27. Komiya S., Gobhardt M. C., Mangham D. C., Inoue A. ( 1998). Role of glutathione in cisplatin resistance in osteosarcoma cell lines. J Orthop Res 16:15–22 [View Article][PubMed]
    [Google Scholar]
  28. Kuras L., Cherest H., Surdin-Kerjan Y., Thomas D. ( 1996). A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism. EMBO J 15:2519–2529[PubMed]
    [Google Scholar]
  29. Lee T. A., Jorgensen P., Bognar A. L., Peyraud C., Thomas D., Tyers M. ( 2010). Dissection of combinatorial control by the Met4 transcriptional complex. Mol Biol Cell 21:456–469 [View Article][PubMed]
    [Google Scholar]
  30. Livak K. J., Schmittgen T. D. ( 2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  31. Martins N. M., Santos N. A., Curti C., Bianchi M. L., Santos A. C. ( 2008). Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol 28:337–344 [View Article][PubMed]
    [Google Scholar]
  32. Medina I., Carbonell J., Pulido L., Madeira S. C., Goetz S., Conesa A., Tárraga J., Pascual-Montano A., Nogales-Cadenas R. & other authors ( 2010). Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38:Web ServerW210–W213 [View Article][PubMed]
    [Google Scholar]
  33. Pérez R. P. ( 1998). Cellular and molecular determinants of cisplatin resistance. Eur J Cancer 34:1535–1542 [View Article][PubMed]
    [Google Scholar]
  34. Pratibha R., Sameer R., Rataboli P. V., Bhiwgade D. A., Dhume C. Y. ( 2006). Enzymatic studies of cisplatin induced oxidative stress in hepatic tissue of rats. Eur J Pharmacol 532:290–293 [View Article][PubMed]
    [Google Scholar]
  35. Rhieu S. Y., Urbas A. A., Lippa K. A., Reipa V. ( 2013). Quantitative measurements of glutathione in yeast cell lysate using 1H NMR. Anal Bioanal Chem 405:4963–4968 [View Article][PubMed]
    [Google Scholar]
  36. Robinson M. D., Grigull J., Mohammad N., Hughes T. R. ( 2002). FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics 3:35 [View Article][PubMed]
    [Google Scholar]
  37. Rodríguez Lombardero S., Vizoso Vázquez A., Rodríguez Belmonte E., González Siso M. I., Cerdán M. E. ( 2012). SKY1 and IXR1 interactions, their effects on cisplatin and spermine resistance in Saccharomyces cerevisiae. Can J Microbiol 58:184–188 [View Article][PubMed]
    [Google Scholar]
  38. Schenk P. W., Boersma A. W., Brandsma J. A., den Dulk H., Burger H., Stoter G., Brouwer J., Nooter K. ( 2001). SKY1 is involved in cisplatin-induced cell kill in Saccharomyces cerevisiae, and inactivation of its human homologue, SRPK1, induces cisplatin resistance in a human ovarian carcinoma cell line. Cancer Res 61:6982–6986[PubMed]
    [Google Scholar]
  39. Schenk P. W., Boersma A. W., Brok M., Burger H., Stoter G., Nooter K. ( 2002). Inactivation of the Saccharomyces cerevisiae SKY1 gene induces a specific modification of the yeast anticancer drug sensitivity profile accompanied by a mutator phenotype. Mol Pharmacol 61:659–666 [View Article][PubMed]
    [Google Scholar]
  40. Shen H., Green M. R. ( 2006). RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev 20:1755–1765 [View Article][PubMed]
    [Google Scholar]
  41. Smyth G. K. ( 2005). LIMMA: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor397–420 Gentleman R., Carey V., Dudoit S., Irizarry R., Huber W. New York: Springer; [View Article]
    [Google Scholar]
  42. Tizón B., Rodríguez-Torres A. M., Cerdán M. E. ( 1999). Disruption of six novel Saccharomyces cerevisiae genes reveals that YGL129c is necessary for growth in non-fermentable carbon sources, YGL128c for growth at low or high temperatures and YGL125w is implicated in the biosynthesis of methionine. Yeast 15:145–154 [View Article][PubMed]
    [Google Scholar]
  43. Wan Y. W., Sabbagh E., Raese R., Qian Y., Luo D., Denvir J., Vallyathan V., Castranova V., Guo N. L. ( 2010). Hybrid models identified a 12-gene signature for lung cancer prognosis and chemoresponse prediction. PLoS ONE 5:e12222 [View Article][PubMed]
    [Google Scholar]
  44. Windgassen M., Krebber H. ( 2003). Identification of Gbp2 as a novel poly(A)+ RNA-binding protein involved in the cytoplasmic delivery of messenger RNAs in yeast. EMBO Rep 4:278–283 [View Article][PubMed]
    [Google Scholar]
  45. Windgassen M., Sturm D., Cajigas I. J., González C. I., Seedorf M., Bastians H., Krebber H. ( 2004). Yeast shuttling SR proteins Npl3p, Gbp2p, and Hrb1p are part of the translating mRNPs, and Npl3p can function as a translational repressor. Mol Cell Biol 24:10479–10491 [View Article][PubMed]
    [Google Scholar]
  46. Wu H. I., Brown J. A., Dorie M. J., Lazzeroni L., Brown J. M. ( 2004). Genome-wide identification of genes conferring resistance to the anticancer agents cisplatin, oxaliplatin, and mitomycin C. Cancer Res 64:3940–3948 [View Article][PubMed]
    [Google Scholar]
  47. Zimmermann T., Zeizinger M., Burda J. V. ( 2005). Cisplatin interaction with cysteine and methionine, a theoretical DFT study. J Inorg Biochem 99:2184–2196 [View Article][PubMed]
    [Google Scholar]
  48. Zitomer R. S., Hall B. D. ( 1976). Yeast cytochrome c messenger RNA. In vitro translation and specific immunoprecipitation of the CYC1 gene product. J Biol Chem 251:6320–6326[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078402-0
Loading
/content/journal/micro/10.1099/mic.0.078402-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error