1887

Abstract

Glucose repression of the tricarboxylic acid (TCA) cycle in was investigated under different environmental conditions using C-tracer experiments. Real-time quantification of the volatile metabolites ethanol and CO allowed accurate carbon balancing. In all experiments with the wild-type, a strong correlation between the rates of growth and glucose uptake was observed, indicating a constant yield of biomass. In contrast, glycerol and acetate production rates were less dependent on the rate of glucose uptake, but were affected by environmental conditions. The glycerol production rate was highest during growth in high-osmolarity medium (2.9 mmol g h), while the highest acetate production rate of 2.1 mmol g h was observed in alkaline medium of pH 6.9. Under standard growth conditions (25 g glucose l , pH 5.0, 30 °C) had low fluxes through the pentose phosphate pathway and the TCA cycle. A significant increase in TCA cycle activity from 0.03 mmol g h to about 1.7 mmol g h was observed when grew more slowly as a result of environmental perturbations, including unfavourable pH values and sodium chloride stress. Compared to experiments with high glucose uptake rates, the ratio of CO to ethanol increased more than 50 %, indicating an increase in flux through the TCA cycle. Although glycolysis and the ethanol production pathway still exhibited the highest fluxes, the net flux through the TCA cycle increased significantly with decreasing glucose uptake rates. Results from experiments with single gene deletion mutants partially impaired in glucose repression (, ) indicated that the rate of glucose uptake correlates with this increase in TCA cycle flux. These findings are discussed in the context of regulation of glucose repression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030213-0
2009-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3827.html?itemId=/content/journal/micro/10.1099/mic.0.030213-0&mimeType=html&fmt=ahah

References

  1. Bisson L. F., Kunathigan V. 2003; On the trail of an elusive flux sensor. Res Microbiol 154:603–610
    [Google Scholar]
  2. Blank L. M., Sauer U. 2004; TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150:1085–1093
    [Google Scholar]
  3. Blank L. M., Kuepfer L., Sauer U. 2005a; Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6:R49
    [Google Scholar]
  4. Blank L. M., Lehmbeck F., Sauer U. 2005b; Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558
    [Google Scholar]
  5. Bosch D., Johansson M., Ferndahl C., Franzen C. J., Larsson C., Gustafsson L. 2008; Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. FEMS Yeast Res 8:10–25
    [Google Scholar]
  6. Causton H. C., Ren B., Koh S. S., Harbison C. T., Kanin E., Jennings E. G., Lee T. I., True H. L., Lander E. S., Young R. A. 2001; Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337
    [Google Scholar]
  7. Daran-Lapujade P., Jansen M. L. A., Daran J. M., van Gulik W., de Winde J. H., Pronk J. T. 2004; Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae – a chemostat culture study. J Biol Chem 279:9125–9138
    [Google Scholar]
  8. De Deken R. H. 1966; Crabtree effect – a regulatory system in yeast. J Gen Microbiol 44:149–156
    [Google Scholar]
  9. Duarte N. C., Palsson B. O., Fu P. 2004; Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae . BMC Genomics 5:63
    [Google Scholar]
  10. Elbing K., Larsson C., Bill R. M., Albers E., Snoep J. L., Boles E., Hohmann S., Gustafsson L. 2004; Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae . Appl Environ Microbiol 70:5323–5330
    [Google Scholar]
  11. Fiaux J., Cakar Z. P., Sonderegger M., Wuthrich K., Szyperski T., Sauer U. 2003; Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis . Eukaryot Cell 2:170–180
    [Google Scholar]
  12. Fischer E., Zamboni N., Sauer U. 2004; High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem 325:308–316
    [Google Scholar]
  13. Gancedo J. M. 2008; The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704
    [Google Scholar]
  14. Giaever G., Chu A. M., Ni L., Connelly C., Riles L., Véronneau S., Dow S., Lucau-Danila A., Anderson K. other authors 2002; Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391
    [Google Scholar]
  15. Gombert A. K., Moreira dos Santos M., Christensen B., Nielsen J. 2001; Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441–1451
    [Google Scholar]
  16. Gustafsson L., Olz R., Larsson K., Larsson C., Adler L. 1993; Energy-balance calculations as a tool to determine maintenance energy-requirements under stress conditions. Pure Appl Chem 65:1893–1898
    [Google Scholar]
  17. Hohmann S. 2002; Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372
    [Google Scholar]
  18. Kornberg A., Pricer W. E. 1951; Diphosphopyridine and triphosphopyridine nucleotide isocitric dehydrogenases in yeast. J Biol Chem 189:123–136
    [Google Scholar]
  19. Kresnowati M. T. A. P., van Winden W. A., van Gulik W. M., Heijnen J. J. 2008; Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid. FEBS J 275:5527–5541
    [Google Scholar]
  20. Maaheimo H., Fiaux J., Cakar Z. P., Bailey J. E., Sauer U., Szyperski T. 2001; Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur J Biochem 268:2464–2479
    [Google Scholar]
  21. Merico A., Sulo P., Piskur J., Compagno C. 2007; Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274:976–989
    [Google Scholar]
  22. Nissen T. L., Schulze U., Nielsen J., Villadsen J. 1997; Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae . Microbiology 143:203–218
    [Google Scholar]
  23. Perocchi F., Mancera E., Steinmetz L. M. 2008; Systematic screens for human disease genes, from yeast to human and back. Mol Biosyst 4:18–29
    [Google Scholar]
  24. Pinkham J. L., Guarente L. 1985; Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae . Mol Cell Biol 5:3410–3416
    [Google Scholar]
  25. Raghevendran V., Gombert A. K., Christensen B., Kotter P., Nielsen J. 2004; Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Yeast 21:769–779
    [Google Scholar]
  26. Rep M., Reiser V., Gartner U., Thevelein J. M., Hohmann S., Ammerer G., Ruis H. 1999; Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5485
    [Google Scholar]
  27. Steinmetz L. M., Scharfe C., Deutschbauer A. M., Mokranjac D., Herman Z. S., Jones T., Chu A. M., Giaever G., Prokisch H. other authors 2002; Systematic screen for human disease genes in yeast. Nat Genet 31:400–404
    [Google Scholar]
  28. Stephanopoulos G., Aristodou A., Nielsen J. 1998 Metabolic Engineering: Principles and Methodologies , 1st edn. San Diego: Academic Press;
    [Google Scholar]
  29. Szyperski T. 1998; 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31:41–106
    [Google Scholar]
  30. van den Berg M. A., de Jong-Gubbels P., Kortland C. J., van Dijken J. P., Pronk J. T., Steensma H. Y. 1996; The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271:28953–28959
    [Google Scholar]
  31. van Dijken J. P., Bauer J., Brambilla L., Duboc P., Francois J. M., Gancedo C., Giuseppin M. L., Heijnen J. J., Hoare M. other authors 2000; An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26:706–714
    [Google Scholar]
  32. van Winden W. A., van Dam J. C., Ras C., Kleijn R. J., Vinke J. L., van Gulik W. M., Heijnen J. J. 2005; Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res 5:559–568
    [Google Scholar]
  33. Velagapudi V. R., Wittmann C., Lengauer T., Talwar P., Heinzle E. 2006; Metabolic screening of Saccharomyces cerevisiae single knockout strains reveals unexpected mobilization of metabolic potential. Process Biochem 41:2170–2179
    [Google Scholar]
  34. Velagapudi V. R., Wittmann C., Schneider K., Heinzle E. 2007; Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. J Biotechnol 132:395–404
    [Google Scholar]
  35. Vemuri G. N., Eiteman M. A., McEwen J. E., Olsson L., Nielsen J. 2007; Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 104:2402–2407
    [Google Scholar]
  36. Verduyn C., Postma E., Scheffers W. A., Van Dijken J. P. 1992; Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517
    [Google Scholar]
  37. Verwaal R., Paalman J. W. G., Hogenkamp A., Verkleij A. J., Verrips C. T., Boonstra J. 2002; HXT5 expression is determined by growth rates in Saccharomyces cerevisiae . Yeast 19:1029–1038
    [Google Scholar]
  38. Wang Y., Pierce M., Schneper L., Guldal C. G., Zhang X., Tavazoie S., Broach J. R. 2004; Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. PLoS Biol 2:E128
    [Google Scholar]
  39. Westergaard S. L., Oliveira A. P., Bro C., Olsson L., Nielsen J. 2007; A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae . Biotechnol Bioeng 96:134–145
    [Google Scholar]
  40. Wittmann C. 2007; Fluxome analysis using GC-MS. Microb Cell Fact 6:6
    [Google Scholar]
  41. Yin Z. K., Wilson S., Hauser N. C., Tournu H., Hoheisel J. D., Brown A. J. P. 2003; Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol Microbiol 48:713–724
    [Google Scholar]
  42. Zamboni N., Fischer E., Sauer U. 2005; FiatFlux – a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030213-0
Loading
/content/journal/micro/10.1099/mic.0.030213-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error