1887

Abstract

Microorganisms encounter toxicities inside the host. Many pathogens exist as subpopulations to maximize survivability. Subpopulations of include antibiotic-tolerant small colony variants (SCVs). These mutants often emerge following antibiotic treatment but can be present in infections prior to antibiotic exposure. We hypothesize that haem toxicity in the host selects for respiration-deficient SCVs in the absence of antibiotics. We demonstrate that some but not all respiration-deficient SCV phenotypes are more protective than the haem detoxification system against transient haem exposure, indicating that haem toxicity in the host may contribute to the dominance of menaquinone-deficient and haem-deficient SCVs prior to antibiotic treatment.

Funding
This study was supported by the:
  • National Institute of General Medical Sciences (Award R15GM128072)
    • Principle Award Recipient: WakemanCatherine
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001044
2021-04-19
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/4/mic001044.html?itemId=/content/journal/micro/10.1099/mic.0.001044&mimeType=html&fmt=ahah

References

  1. Gorwitz RJ, Kruszon-Moran D, McAllister SK, McQuillan G, McDougal LK et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-2004. J Infect Dis 2008; 197:1226–1234 [View Article][PubMed]
    [Google Scholar]
  2. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 2006; 4:295–305 [View Article][PubMed]
    [Google Scholar]
  3. Bui LMG, Kidd SP. A full genomic characterization of the development of a stable small colony variant cell-type by a clinical Staphylococcus aureus strain. Infect Genet Evol 2015; 36:345–355 [View Article][PubMed]
    [Google Scholar]
  4. Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Löffler B et al. Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol 2014; 4:99 [View Article][PubMed]
    [Google Scholar]
  5. Proctor RA, Balwit JM, Vesga O. Variant subpopulations of Staphylococcus aureus as cause of persistent and recurrent infections. Infect Agents Dis 1994; 3:302–312[PubMed]
    [Google Scholar]
  6. Proctor RA, van Langevelde P, Kristjansson M, Maslow JN, Arbeit RD. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus . Clin Infect Dis 1995; 20:95–102 [View Article][PubMed]
    [Google Scholar]
  7. Hammer ND, Cassat JE, Noto MJ, Lojek LJ, Chadha AD et al. Inter- and intraspecies metabolite exchange promotes virulence of antibiotic-resistant Staphylococcus aureus. Cell Host Microbe 2014; 16:531–537 [View Article][PubMed]
    [Google Scholar]
  8. Sifri CD, Baresch-Bernal A, Calderwood SB, von Eiff C. Virulence of Staphylococcus aureus small colony variants in the Caenorhabditis elegans infection model. Infect Immun 2006; 74:1091–1096 [View Article][PubMed]
    [Google Scholar]
  9. Vaudaux P, Francois P, Bisognano C, Kelley WL, Lew DP et al. Increased expression of clumping factor and fibronectin-binding proteins by hemB mutants of Staphylococcus aureus expressing small colony variant phenotypes. Infect Immun 2002; 70:5428–5437 [View Article][PubMed]
    [Google Scholar]
  10. Vesga O, Groeschel MC, Otten MF, Brar DW, Vann JM et al. Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J Infect Dis 1996; 173:739–742 [View Article][PubMed]
    [Google Scholar]
  11. Baishya J, Wakeman CA. Selective pressures during chronic infection drive microbial competition and cooperation. NPJ Biofilms Microbiomes 2019; 5:16 [View Article][PubMed]
    [Google Scholar]
  12. Hoffman LR, Déziel E, D'Argenio DA, Lépine F, Emerson J et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2006; 103:19890–19895 [View Article][PubMed]
    [Google Scholar]
  13. Kahl BC, Becker K, Löffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev 2016; 29:401–427 [View Article][PubMed]
    [Google Scholar]
  14. Gläser R, Becker K, von Eiff C, Meyer-Hoffert U, Harder J. Decreased susceptibility of Staphylococcus aureus small-colony variants toward human antimicrobial peptides. J Invest Dermatol 2014; 134:2347–2350 [View Article][PubMed]
    [Google Scholar]
  15. von Eiff C, Bettin D, Proctor RA, Rolauffs B, Lindner N et al. Recovery of small colony variants of Staphylococcus aureus following gentamicin bead placement for osteomyelitis. Clin Infect Dis 1997; 25:1250–1251 [View Article][PubMed]
    [Google Scholar]
  16. Besier S, Smaczny C, von Mallinckrodt C, Krahl A, Ackermann H et al. Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J Clin Microbiol 2007; 45:168–172 [View Article][PubMed]
    [Google Scholar]
  17. Kavanagh N, Ryan EJ, Widaa A, Sexton G, Fennell J et al. Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev 2018; 31: 14 02 2018 [View Article][PubMed]
    [Google Scholar]
  18. Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe 2013; 13:509–519 [View Article][PubMed]
    [Google Scholar]
  19. Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O. Iron-source preference of Staphylococcus aureus infections. Science 2004; 305:1626–1628 [View Article][PubMed]
    [Google Scholar]
  20. Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE et al. A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe 2007; 1:109–119 [View Article][PubMed]
    [Google Scholar]
  21. Lechardeur D, Cesselin B, Liebl U, Vos MH, Fernandez A et al. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis . J Biol Chem 2012; 287:4752–4758 [View Article][PubMed]
    [Google Scholar]
  22. Wakeman CA, Stauff DL, Zhang Y, Skaar EP. Differential activation of Staphylococcus aureus heme detoxification machinery by heme analogues. J Bacteriol 2014; 196:1335–1342 [View Article][PubMed]
    [Google Scholar]
  23. Stauff DL, Skaar EP. Bacillus anthracis HssRS signalling to HrtAB regulates haem resistance during infection. Mol Microbiol 2009; 72:763–778 [View Article][PubMed]
    [Google Scholar]
  24. Wakeman CA, Hammer ND, Stauff DL, Attia AS, Anzaldi LL et al. Menaquinone biosynthesis potentiates haem toxicity in Staphylococcus aureus. Mol Microbiol 2012; 86:1376–1392 [View Article][PubMed]
    [Google Scholar]
  25. Edwards AM. Phenotype switching is a natural consequence of Staphylococcus aureus replication. J Bacteriol 2012; 194:5404–5412 [View Article][PubMed]
    [Google Scholar]
  26. Duthie ES, Lorenz LL, coagulase S. Mode of action and antigenicity. J Gen Microbiol 1952; 6:95–107
    [Google Scholar]
  27. Attia AS, Benson MA, Stauff DL, Torres VJ, Skaar EP. Membrane damage elicits an immunomodulatory program in Staphylococcus aureus . PLoS Pathog 2010; 6:e1000802 [View Article][PubMed]
    [Google Scholar]
  28. Hammer ND, Reniere ML, Cassat JE, Zhang Y, Hirsch AO et al. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. mBio 2013; 4:e00241-13 30 Jul 2013 [View Article][PubMed]
    [Google Scholar]
  29. Stauff DL, Bagaley D, Torres VJ, Joyce R, Anderson KL et al. Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response. J Bacteriol 2008; 190:3588–3596 [View Article][PubMed]
    [Google Scholar]
  30. Aich A, Freundlich M, Vekilov PG. The free heme concentration in healthy human erythrocytes. Blood Cells Mol Dis 2015; 55:402–409 [View Article][PubMed]
    [Google Scholar]
  31. Dean MA, Olsen RJ, Long SW, Rosato AE, Musser JM. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione. Infect Immun 2014; 82:1600–1605 [View Article][PubMed]
    [Google Scholar]
  32. Lechner S, Lewis K, Bertram R. Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J Mol Microbiol Biotechnol 2012; 22:235–244 [View Article][PubMed]
    [Google Scholar]
  33. Bisht K, Wakeman CA. Discovery and therapeutic targeting of differentiated biofilm subpopulations. Front Microbiol 2019; 10:10 [View Article][PubMed]
    [Google Scholar]
  34. Amato SM, Fazen CH, Henry TC, Mok WWK, Orman MA et al. The role of metabolism in bacterial persistence. Front Microbiol 2014; 5:70 [View Article][PubMed]
    [Google Scholar]
  35. Morikawa K, Ohniwa RL, Ohta T, Tanaka Y, Takeyasu K et al. Adaptation beyond the stress response: cell structure dynamics and population heterogeneity in Staphylococcus aureus . Microbes Environ 2010; 25:75–82 [View Article][PubMed]
    [Google Scholar]
  36. Ayala OD, Wakeman CA, Pence IJ, Gaddy JA, Slaughter JC et al. Drug-resistant Staphylococcus aureus strains reveal distinct biochemical features with Raman microspectroscopy. ACS Infect Dis 2018; 4:1197–1210 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001044
Loading
/content/journal/micro/10.1099/mic.0.001044
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error