1887

Abstract

is a major aetiological agent of bovine respiratory disease worldwide. Genome-based analyses are increasingly being used to monitor the genetic diversity and global distribution of , complementing existing subtyping schemes based on locus sequencing. However, these analyses have so far provided limited information on the spatiotemporal and population dynamics of circulating subtypes. Here we applied a genome-wide phylodynamic approach to explore the epidemic dynamics of 88 French strains collected between 2000 and 2019 in France and belonging to the currently dominant subtype 2 (st2). A strong molecular clock signal detected in the genomic data enabled robust phylodynamic inferences, which estimated that the st2 population in France is composed of two lineages that successively emerged from independent introductions of international strains. The first lineage appeared around 2000 and supplanted the previously established antimicrobial-susceptible subtype 1. The second lineage, which is likely more transmissible, progressively replaced the first st2 lineage population from 2005 onward and became predominant after 2010. Analyses also showed a brief decline in this second st2 lineage population in around 2011, possibly due to the challenge from the concurrent emergence of subtype 3 in France. Finally, we identified non-synonymous mutations in genes associated with lineages, which raises prospects for identifying new surveillance molecular markers. A genome-wide phylodynamic approach provides valuable resources for monitoring the evolution and epidemic dynamics of circulating subtypes, and may prove critical for developing more effective surveillance systems and disease control strategies.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001067
2023-07-24
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/7/mgen001067.html?itemId=/content/journal/mgen/10.1099/mgen.0.001067&mimeType=html&fmt=ahah

References

  1. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 2004; 303:327–332 [View Article]
    [Google Scholar]
  2. Holmes EC, Grenfell BT. Discovering the phylodynamics of RNA viruses. PLoS Comput Biol 2009; 5:e1000505 [View Article] [PubMed]
    [Google Scholar]
  3. Pybus OG, Rambaut A. Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 2009; 10:540–550 [View Article] [PubMed]
    [Google Scholar]
  4. Guinat C, Vergne T, Kocher A, Chakraborty D, Paul MC et al. What can phylodynamics bring to animal health research?. Trends Ecol Evol 2021; 36:837–847 [View Article] [PubMed]
    [Google Scholar]
  5. Ingle DJ, Howden BP, Duchene S. Development of phylodynamic methods for bacterial pathogens. Trends Microbiol 2021; 29:788–797 [View Article] [PubMed]
    [Google Scholar]
  6. Baele G, Dellicour S, Suchard MA, Lemey P, Vrancken B. Recent advances in computational phylodynamics. Curr Opin Virol 2018; 31:24–32 [View Article] [PubMed]
    [Google Scholar]
  7. Stott CM, Bobay L-M. Impact of homologous recombination on core genome phylogenies. BMC Genomics 2020; 21:829 [View Article] [PubMed]
    [Google Scholar]
  8. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B et al. Toward automatic reconstruction of a highly resolved tree of life. Science 2006; 311:1283–1287 [View Article] [PubMed]
    [Google Scholar]
  9. Delaney NF, Balenger S, Bonneaud C, Marx CJ, Hill GE et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet 2012; 8:e1002511 [View Article] [PubMed]
    [Google Scholar]
  10. Duchêne S, Holt KE, Weill F-X, Le Hello S, Hawkey J et al. Genome-scale rates of evolutionary change in bacteria. Microbial Genomics 2016; 2: [View Article]
    [Google Scholar]
  11. De la Cruz L, Barrera M, Rios L, Corona-González B, Bulnes CA et al. Unraveling the global phylodynamic and phylogeographic expansion of Mycoplasma gallisepticum: understanding the origin and expansion of this pathogen in ecuador. Pathogens 2020; 9:674 [View Article] [PubMed]
    [Google Scholar]
  12. Maunsell FP, Woolums AR, Francoz D, Rosenbusch RF, Step DL et al. Mycoplasma bovis infections in cattle. J Vet Intern Med 2011; 25:772–783 [View Article] [PubMed]
    [Google Scholar]
  13. Deeney AS, Collins R, Ridley AM. Identification of Mycoplasma species and related organisms from ruminants in England and Wales during 2005-2019. BMC Vet Res 2021; 17:325 [View Article] [PubMed]
    [Google Scholar]
  14. Jaÿ M, Poumarat F, Colin A, Tricot A, Tardy F. Addressing the antimicrobial resistance of ruminant mycoplasmas using a clinical surveillance network. Front Vet Sci 2021; 8:667175 [View Article] [PubMed]
    [Google Scholar]
  15. Register KB, Lysnyansky I, Jelinski MD, Boatwright WD, Waldner M et al. Comparison of two multilocus sequence typing schemes for Mycoplasma bovis and revision of the PubMLST reference method. J Clin Microbiol 2020; 58:e00283-20 [View Article] [PubMed]
    [Google Scholar]
  16. Becker CAM, Thibault FM, Arcangioli MA, Tardy F. Loss of diversity within Mycoplasma bovis isolates collected in France from bovines with respiratory diseases over the last 35 years. Infect Genet Evol 2015; 33:118–126 [View Article] [PubMed]
    [Google Scholar]
  17. García-Galán A, Nouvel L-X, Baranowski E, Gómez-Martín Á, Sánchez A et al. Mycoplasma bovis in Spanish cattle herds: two groups of multiresistant isolates predominate, with one remaining susceptible to fluoroquinolones. Pathogens 2020; 9:545 [View Article] [PubMed]
    [Google Scholar]
  18. Tardy F, Aspan A, Autio T, Ridley A, Tricot A et al. Mycoplasma bovis in Nordic European countries: emergence and dominance of a new clone. Pathogens 2020; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  19. Bokma J, Vereecke N, De Bleecker K, Callens J, Ribbens S et al. Phylogenomic analysis of Mycoplasma bovis from Belgian veal, dairy and beef herds. Vet Res 2020; 51:121 [View Article] [PubMed]
    [Google Scholar]
  20. Kumar R, Register K, Christopher-Hennings J, Moroni P, Gioia G et al. Population genomic analysis of Mycoplasma bovis elucidates geographical variations and genes associated with host-types. Microorganisms 2020; 8:1561 [View Article] [PubMed]
    [Google Scholar]
  21. Yair Y, Borovok I, Mikula I, Falk R, Fox LK et al. Genomics-based epidemiology of bovine Mycoplasma bovis strains in Israel. BMC Genomics 2020; 21:70 [View Article] [PubMed]
    [Google Scholar]
  22. Khalil D, Becker CAM, Tardy F. Alterations in the quinolone resistance-determining regions and fluoroquinolone resistance in clinical isolates and laboratory-derived mutants of Mycoplasma bovis: not all genotypes may be equal. Appl Environ Microbiol 2016; 82:1060–1068 [View Article] [PubMed]
    [Google Scholar]
  23. Becker CAM, Ambroset C, Huleux A, Vialatte A, Colin A et al. Monitoring Mycoplasma bovis diversity and antimicrobial susceptibility in calf feedlots undergoing a respiratory disease outbreak. Pathogens 2020; 9:593 [View Article] [PubMed]
    [Google Scholar]
  24. Ambroset C, Peticca A, Tricot A, Tardy F. Genomic features of Mycoplasma bovis subtypes currently circulating in France. BMC Genomics 2022; 23:603 [View Article] [PubMed]
    [Google Scholar]
  25. Hall MD, Woolhouse MEJ, Rambaut A. The effects of sampling strategy on the quality of reconstruction of viral population dynamics using Bayesian skyline family coalescent methods: a simulation study. Virus Evol 2016; 2: [View Article]
    [Google Scholar]
  26. Poumarat F, Perrin B, Longchambon D. Identification of ruminant mycoplasmas by dot immunobinding on membrane filtration (MF dot). Vet Microbiol 1991; 29:329–338 [View Article] [PubMed]
    [Google Scholar]
  27. Wise KS, Calcutt MJ, Foecking MF, Röske K, Madupu R et al. Complete genome sequence of Mycoplasma bovis type strain PG45 (ATCC 25523). Infect Immun 2011; 79:982–983 [View Article] [PubMed]
    [Google Scholar]
  28. Li H. Aligning sequence reads, clone sequences and assembly Contigs with BWA-MEM. arXiv 20131303.3997v2 [View Article]
    [Google Scholar]
  29. Petersen KR, Streett DA, Gerritsen AT, Hunter SS, Settles ML. Super deduper, fast PCR duplicate detection in fastq files. In BCB '15 New York, NY, USA: Atlanta Georgia; 2015 pp 491–492
    [Google Scholar]
  30. Andrews S. FastQC - A quality control tool for high throughput sequence data. Babraham Bioinforma; n.d http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  31. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  32. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  33. García-Galán A, Baranowski E, Hygonenq M-C, Walch M, Croville G et al. Genome mosaicism in field strains of Mycoplasma bovis as footprints of in-host horizontal chromosomal transfer. Appl Environ Microbiol 2022; 88:e0166121 [View Article] [PubMed]
    [Google Scholar]
  34. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  35. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  36. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  37. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics 2011; 27:592–593 [View Article] [PubMed]
    [Google Scholar]
  38. Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res 2018; 46:e134 [View Article] [PubMed]
    [Google Scholar]
  39. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 2018; 4:vey016 [View Article] [PubMed]
    [Google Scholar]
  40. Gill MS, Lemey P, Faria NR, Rambaut A, Shapiro B et al. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol Biol Evol 2013; 30:713–724 [View Article] [PubMed]
    [Google Scholar]
  41. Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 2012; 29:2157–2167 [View Article] [PubMed]
    [Google Scholar]
  42. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol 2006; 4:e88 [View Article] [PubMed]
    [Google Scholar]
  43. Ferreira MAR, Suchard MA. Bayesian analysis of elapsed times in continuous-time Markov chains. Can J Statistics 2008; 36:355–368 [View Article]
    [Google Scholar]
  44. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol 2018; 67:901–904 [View Article] [PubMed]
    [Google Scholar]
  45. Yu G, Smith DK, Zhu H, Guan Y, Lam TT. GGTREE: an R package for visualization and annotation of Phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36 [View Article]
    [Google Scholar]
  46. Orr HA. Fitness and its role in evolutionary genetics. Nat Rev Genet 2009; 10:531–539 [View Article] [PubMed]
    [Google Scholar]
  47. Neher RA, Russell CA, Shraiman BI. Predicting evolution from the shape of genealogical trees. Elife 2014; 3:1–18 [View Article] [PubMed]
    [Google Scholar]
  48. Stadler T, Kühnert D, Bonhoeffer S, Drummond AJ. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc Natl Acad Sci 2013; 110:228–233 [View Article] [PubMed]
    [Google Scholar]
  49. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2019; 15:e1006650 [View Article] [PubMed]
    [Google Scholar]
  50. Qi J, Guo A, Cui P, Chen Y, Mustafa R et al. Comparative geno-plasticity analysis of Mycoplasma bovis HB0801 (Chinese isolate). PLoS One 2012; 7:e38239 [View Article] [PubMed]
    [Google Scholar]
  51. Li Y, Wang J, Liu B, Yu Y, Yuan T et al. DnaK functions as a moonlighting protein on the surface of Mycoplasma hyorhinis cells. Front Microbiol 2022; 13:842058 [View Article]
    [Google Scholar]
  52. Hagemann L, Gründel A, Jacobs E, Dumke R. The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix. Pathog Dis 2017; 75:17 [View Article] [PubMed]
    [Google Scholar]
  53. Arfi Y, Lartigue C, Sirand-Pugnet P, Blanchard A. Beware of Mycoplasma anti-immunoglobulin strategies. mBio 2021; 12:e0197421 [View Article] [PubMed]
    [Google Scholar]
  54. Arfi Y, Minder L, Di Primo C, Le Roy A, Ebel C et al. MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G. Proc Natl Acad Sci 2016; 113:5406–5411 [View Article] [PubMed]
    [Google Scholar]
  55. Menghwar H, Guo A, Chen Y, Lysnyansky I, Parker AM et al. A core genome multilocus sequence typing (cgMLST) analysis of Mycoplasma bovis isolates. Vet Microbiol 2022; 273:109532 [View Article] [PubMed]
    [Google Scholar]
  56. Dupuy V, Manso-Silván L, Barbe V, Thebault P, Dordet-Frisoni E et al. Evolutionary history of contagious bovine pleuropneumonia using next generation sequencing of Mycoplasma mycoides subsp. mycoides “Small Colony.”. PLoS One 2012; 7:e46821 [View Article] [PubMed]
    [Google Scholar]
  57. Khalil D, Becker CAM, Tardy F. Monitoring the decrease in susceptibility to ribosomal RNAs targeting antimicrobials and its molecular basis in clinical Mycoplasma bovis isolates over time. Microb Drug Resist 2017; 23:799–811 [View Article] [PubMed]
    [Google Scholar]
  58. Blanquart F, Hozé N, Cowling BJ, Débarre F, Cauchemez S. Selection for infectivity profiles in slow and fast epidemics, and the rise of SARS-CoV-2 variants. Elife 2022; 11:e75791 [View Article] [PubMed]
    [Google Scholar]
  59. Dordet-Frisoni E, Faucher M, Sagné E, Baranowski E, Tardy F et al. Mycoplasma chromosomal transfer: a distributive, conjugative process creating an infinite variety of mosaic genomes. Front Microbiol 2019; 10:2441 [View Article] [PubMed]
    [Google Scholar]
  60. Jordan A, Sadler RJ, Sawford K, van Andel M, Ward M et al. Mycoplasma bovis outbreak in New Zealand cattle: an assessment of transmission trends using surveillance data. Transbound Emerg Dis 2021; 68:3381–3395 [View Article] [PubMed]
    [Google Scholar]
  61. Gilbert M, Nicolas G, Cinardi G, Van Boeckel TP, Vanwambeke SO et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci Data 2018; 5:180227 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001067
Loading
/content/journal/mgen/10.1099/mgen.0.001067
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error