1887

Abstract

Bacteriophages (phages) within the genus are T7-like podoviruses belonging to the subfamily , within the family and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50–60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies. Moreover, long-read-only assemblies are often littered with sequencing and/or assembly errors and require additional curation. Here, we present the isolation and characterisation of ten novel przondoviruses targeting spp. We describe HYPPA, a brid and oly-polish hage ssembly workflow, which utilises long-read assemblies in combination with short-read sequencing to resolve phage DTRs and correcting errors, negating the need for laborious primer walking and Sanger sequencing validation. Our assembly workflow utilised Oxford Nanopore Technologies for long-read sequencing for its accessibility, making it the more relevant long-read sequencing technology at this time, and Illumina DNA Prep for short-read sequencing, representing the most commonly used technologies globally. Our data demonstrate the importance of careful curation of phage assemblies before publication, and prior to using them for comparative genomics.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/R012504/1)
    • Principle Award Recipient: MarkA. Webber
  • Wellcome Trust (Award 220876/Z/20/Z)
    • Principle Award Recipient: LindsayJ. Hall
  • Wellcome Trust (Award 100974/C/13/Z)
    • Principle Award Recipient: LindsayJ. Hall
  • Biotechnology and Biological Sciences Research Council (Award BB/CCG1860/1)
    • Principle Award Recipient: DavidJ. Baker
  • Biotechnology and Biological Sciences Research Council (Award BB/R012490/1)
    • Principle Award Recipient: EvelienM Adriaenssens
  • Medical Research Council (Award MR/R015937/1)
    • Principle Award Recipient: ClaireK. A. Elek
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001065
2023-07-18
2024-05-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/7/mgen001065.html?itemId=/content/journal/mgen/10.1099/mgen.0.001065&mimeType=html&fmt=ahah

References

  1. Turner D, Kropinski AM, Adriaenssens EM. A roadmap for genome-based phage taxonomy. Viruses 2021; 13:506 [View Article] [PubMed]
    [Google Scholar]
  2. Evseev PV, Lukianova AA, Shneider MM, Korzhenkov AA, Bugaeva EN et al. Origin and evolution of Studiervirinae bacteriophages infecting Pectobacterium: horizontal transfer assists adaptation to new niches. Microorganisms 2020; 8:1707 [View Article] [PubMed]
    [Google Scholar]
  3. ICTV Current ICTV Taxonomy Release. 2022; 2022 https://ictv.global/taxonomy accessed 4 August 2022
  4. Turner D, Shkoporov AN, Lood C, Millard AD, Dutilh BE et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch Virol 2023; 168:74–82 [View Article] [PubMed]
    [Google Scholar]
  5. Adriaenssens EM, Sullivan MB, Knezevic P, van Zyl LJ, Sarkar BL et al. Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses subcommittee. Arch Virol 2020; 165:1253–1260 [View Article] [PubMed]
    [Google Scholar]
  6. Molineux IJ. The T7 group. In R Calendar. eds The Bacteriophages, 2nd. edn Oxford: Oxford University Press; 2006 pp 277–301
    [Google Scholar]
  7. Boeckman J, Korn A, Yao G, Ravindran A, Gonzalez C et al. Sheep in wolves’ clothing: temperate T7-like bacteriophages and the origins of the Autographiviridae. Virology 2022; 568:86–100 [View Article] [PubMed]
    [Google Scholar]
  8. Lavigne R, Seto D, Mahadevan P, Ackermann H-W, Kropinski AM. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 2008; 159:406–414 [View Article] [PubMed]
    [Google Scholar]
  9. Black LW. DNA packaging in dsDNA bacteriophages. Annu Rev Microbiol 1989; 43:267–292 [View Article] [PubMed]
    [Google Scholar]
  10. Li S, Fan H, An X, Fan H, Jiang H et al. Scrutinizing virus genome termini by high-throughput sequencing. PLoS One 2014; 9:e85806 [View Article] [PubMed]
    [Google Scholar]
  11. Casjens SR, Gilcrease EB. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 2009; 502:91–111 [View Article] [PubMed]
    [Google Scholar]
  12. Merrill BD, Ward AT, Grose JH, Hope S. Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies. BMC Genomics 2016; 17:679 [View Article] [PubMed]
    [Google Scholar]
  13. Kutter E, Sulakvelidze A. Bacteriophages. In Kutter E, Sulakvelidze A. eds Basic Phage Biology Boca Raton, Florida: CRC Press; 2004 pp 29–66
    [Google Scholar]
  14. Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F et al. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424 [View Article] [PubMed]
    [Google Scholar]
  15. Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol 2020; 18:344–359 [View Article] [PubMed]
    [Google Scholar]
  16. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 2016; 80:629–661 [View Article] [PubMed]
    [Google Scholar]
  17. Theuretzbacher U. Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr Opin Microbiol 2017; 39:106–112 [View Article] [PubMed]
    [Google Scholar]
  18. Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nat Rev Microbiol 2020; 18:275–285 [View Article] [PubMed]
    [Google Scholar]
  19. Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019; 25:219–232 [View Article] [PubMed]
    [Google Scholar]
  20. Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, Kassner J, Majkowska-Skrobek G et al. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virol J 2013; 10:100 [View Article] [PubMed]
    [Google Scholar]
  21. Olsen NS, Hendriksen NB, Hansen LH, Kot W. A New High-Throughput Screening Method for Phages: Enabling Crude Isolation and Fast Identification of Diverse Phages with Therapeutic Potential. Phage 2020; 1:137–148 [View Article] [PubMed]
    [Google Scholar]
  22. Carlson K. Working with bacteriophages: common techniques and methodological approaches. In E Kutter, A Sulakvelidze. eds Bacteriophages: Biology and Applications vol 1 Boca Raton, Florida: CRC Press; 2005 pp 437–494 [View Article]
    [Google Scholar]
  23. Grasis JA. Host-associated bacteriophage isolation and preparation for viral metagenomics. In Pantaleo V, Chiumenti M. eds Viral Metagenomics: Methods and Protocols New York: Springer; 2018 pp 1–25
    [Google Scholar]
  24. Wick RR, Judd LM, Holt KE. Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing. PLoS Comput Biol 2023; 19:e1010905 [View Article] [PubMed]
    [Google Scholar]
  25. Chen Y, Brook TC, Soe CZ, O’Neill I, Alcon-Giner C et al. Preterm infants harbour diverse Klebsiella populations, including atypical species that encode and produce an array of antimicrobial resistance- and virulence-associated factors. Microb Genom 2020; 6:e000377 [View Article] [PubMed]
    [Google Scholar]
  26. Shin SH, Kim S, Kim JY, Lee S, Um Y et al. Complete genome sequence of Enterobacter aerogenes KCTC 2190. J Bacteriol 2012; 194:2373–2374 [View Article] [PubMed]
    [Google Scholar]
  27. Lee JH, Cheon IS, Shim B-S, Kim DW, Kim SW et al. Draft genome sequence of Klebsiella pneumoniae subsp. pneumoniae DSM 30104T. J Bacteriol 2012; 194:5722–5723 [View Article] [PubMed]
    [Google Scholar]
  28. Woodford N, Zhang J, Warner M, Kaufmann ME, Matos J et al. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J Antimicrob Chemother 2008; 62:1261–1264 [View Article] [PubMed]
    [Google Scholar]
  29. Chen M, Li Y, Li S, Tang L, Zheng J et al. Genomic identification of nitrogen-fixing Klebsiella Variicola K. pneumoniae and K. quasipneumoniae. J Basic Microbiol 2016; 56:78–84 [View Article] [PubMed]
    [Google Scholar]
  30. Schwengers O, Hoek A, Fritzenwanker M, Falgenhauer L, Hain T et al. ASA3P: an automatic and scalable pipeline for the assembly, annotation and higher-level analysis of closely related bacterial isolates. PLoS Comput Biol 2020; 16:e1007134 [View Article] [PubMed]
    [Google Scholar]
  31. Petit RA, Read TD. Bactopia: a flexible pipeline for complete analysis of bacterial genomes. mSystems 2020; 5:e00190-20 [View Article] [PubMed]
    [Google Scholar]
  32. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 2012; 158:1005–1015 [View Article] [PubMed]
    [Google Scholar]
  33. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  34. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. Genomic surveillance framework and global population structure for Klebsiella pneumoniae. Genomics 2021 [View Article]
    [Google Scholar]
  35. Wick RR, Heinz E, Holt KE, Wyres KL. Kaptive web: user-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J Clin Microbiol 2018; 56:e00197-18 [View Article] [PubMed]
    [Google Scholar]
  36. Van Twest R, Kropinski AM. Bacteriophage enrichment from water and soil. Methods Mol Biol 2009; 501:15–21 [View Article] [PubMed]
    [Google Scholar]
  37. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 2009; 501:69–76 [View Article] [PubMed]
    [Google Scholar]
  38. Kropinski AM. Bacteriophages. In Kutter E, Sulakvelidze A. eds Phage Host Range and Efficiency of Plating Totowa, NJ: CRC Press; 2009 pp 141–149 [View Article]
    [Google Scholar]
  39. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc accessed 8 January 2021
  40. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  41. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  42. Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M et al. Assembly of long error-prone reads using de Bruijn graphs. Proc Natl Acad Sci 2016; 113:E8396–E8405 [View Article] [PubMed]
    [Google Scholar]
  43. Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res 2019; 8:2138 [View Article] [PubMed]
    [Google Scholar]
  44. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol 2021; 22:266 [View Article] [PubMed]
    [Google Scholar]
  45. Chen Y, Zhang Y, Wang AY, Gao M, Chong Z. Accurate long-read de novo assembly evaluation with Inspector. Genome Biol 2021; 22:312 [View Article] [PubMed]
    [Google Scholar]
  46. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  47. Wick RR. Porechop; 2018 https://github.com/rrwick/Porechop accessed 28 October 2002
  48. Wright C, Wykes M. Medaka; 2020 https://github.com/nanoporetech/medaka accessed 22 September 2022
  49. Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 2022; 18:e1009802 [View Article] [PubMed]
    [Google Scholar]
  50. Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput Biol 2020; 16:e1007981 [View Article] [PubMed]
    [Google Scholar]
  51. Seemann T. Shovill; 2018 https://github.com/tseemann/shovill accessed 12 January 2021
  52. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  53. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  54. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  55. Garneau JR, Depardieu F, Fortier L-C, Bikard D, Monot M. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 2017; 7:8292 [View Article] [PubMed]
    [Google Scholar]
  56. Benes V, Kilger C, Voss H, Pääbo S, Ansorge W. Direct primer walking on P1 plasmid DNA. Biotechniques 1997; 23:98–100 [View Article] [PubMed]
    [Google Scholar]
  57. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257–269 [View Article] [PubMed]
    [Google Scholar]
  58. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  59. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013; 14:178–192 [View Article] [PubMed]
    [Google Scholar]
  60. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol 2019; 20:8 [View Article] [PubMed]
    [Google Scholar]
  61. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  62. Li H. Aligning sequence reads, clone sequences and assembly Contigs with BWA-MEM. biorxiv 2013 [View Article]
    [Google Scholar]
  63. Okonechnikov K, Golosova O, Fursov M. team tU. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012; 28:1166–1167 [View Article] [PubMed]
    [Google Scholar]
  64. Bouras G, Nepal R, Houtak G, Psaltis AJ, Wormald P-J et al. Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics 2022; 39:btac776 [View Article] [PubMed]
    [Google Scholar]
  65. McNair K, Zhou C, Dinsdale EA, Souza B, Edwards RA. PHANOTATE: a novel approach to gene identification in phage genomes. Bioinformatics 2019; 35:4537–4542 [View Article] [PubMed]
    [Google Scholar]
  66. Hsieh P-F, Lin H-H, Lin T-L, Chen Y-Y, Wang J-T. Two T7-like bacteriophages, K5-2 and K5-4, each encodes two capsule depolymerases: isolation and functional characterization. Sci Rep 2017; 7:4624 [View Article] [PubMed]
    [Google Scholar]
  67. Whitfield C, Lam M. Characterisation of coliphage K30, a bacteriophage specific for Escherichia coli capsular serotype K30. FEMS Microbiol Lett 1986; 37:351–355 [View Article]
    [Google Scholar]
  68. Teng T, Li Q, Liu Z, Li X, Liu Z et al. Characterization and genome analysis of novel Klebsiella phage Henu1 with lytic activity against clinical strains of Klebsiella pneumoniae. Arch Virol 2019; 164:2389–2393 [View Article] [PubMed]
    [Google Scholar]
  69. Rudolph C, Freund-Mölbert E, Stirm S. Fragments of Klebsiella bacteriophage no. 11. Virology 1975; 64:236–246 [View Article] [PubMed]
    [Google Scholar]
  70. Thiry D, Passet V, Danis-Wlodarczyk K, Lood C, Wagemans J et al. New bacteriophages against emerging lineages ST23 and ST258 of Klebsiella pneumoniae and efficacy assessment in Galleria mellonella larvae. Viruses 2019; 11:411 [View Article] [PubMed]
    [Google Scholar]
  71. Wu Y, Wang R, Xu M, Liu Y, Zhu X et al. A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol 2019; 10:2768 [View Article] [PubMed]
    [Google Scholar]
  72. Labudda Ł, Strapagiel D, Karczewska-Golec J, Golec P. Complete annotated genome sequences of four Klebsiella pneumoniae phages isolated from Sewage in Poland. Genome Announc 2017; 5:45 [View Article] [PubMed]
    [Google Scholar]
  73. Liu Y, Leung SSY, Huang Y, Guo Y, Jiang N et al. Identification of two depolymerases from phage IME205 and their antivirulent functions on K47 capsule of Klebsiella pneumoniae. Front Microbiol 2020; 11:218 [View Article] [PubMed]
    [Google Scholar]
  74. Kwon H-J, Cho S-H, Kim T-E, Won Y-J, Jeong J et al. Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum. Appl Environ Microbiol 2008; 74:6970–6979 [View Article] [PubMed]
    [Google Scholar]
  75. Hamdi S, Rousseau GM, Labrie SJ, Kourda RS, Tremblay DM et al. Characterization of five podoviridae phages infecting Citrobacter freundii. Front Microbiol 2016; 7:1023 [View Article] [PubMed]
    [Google Scholar]
  76. Bleriot I, Blasco L, Pacios O, Fernández-García L, Ambroa A et al. The role of PemIK (PemK/PemI) type II TA system from Klebsiella pneumoniae clinical strains in lytic phage infection. Sci Rep 2022; 12:4488 [View Article] [PubMed]
    [Google Scholar]
  77. Dunn JJ, Studier FW. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 1983; 166:477–535 [View Article] [PubMed]
    [Google Scholar]
  78. Dobbins AT, George M, Basham DA, Ford ME, Houtz JM et al. Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J Bacteriol 2004; 186:1933–1944 [View Article] [PubMed]
    [Google Scholar]
  79. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 2004; 32:W20–W25 [View Article] [PubMed]
    [Google Scholar]
  80. Darling AE, Mau B, Perna NT, Stajich JE. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article] [PubMed]
    [Google Scholar]
  81. Moraru C, Varsani A, Kropinski AM. VIRIDIC- a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 2020; 12:1268 [View Article] [PubMed]
    [Google Scholar]
  82. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  83. Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  84. Gilchrist CLM, Chooi Y-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  85. Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE et al. Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol 2018; 16:760–773 [View Article] [PubMed]
    [Google Scholar]
  86. González-García VA, Pulido-Cid M, Garcia-Doval C, Bocanegra R, van Raaij MJ et al. Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. J Biol Chem 2015; 290:10038–10044 [View Article] [PubMed]
    [Google Scholar]
  87. Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 2017; 101:3103–3119 [View Article] [PubMed]
    [Google Scholar]
  88. Eskenazi A, Lood C, Wubbolts J, Hites M, Balarjishvili N et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun 2022; 13:302 [View Article] [PubMed]
    [Google Scholar]
  89. Piel D, Bruto M, Labreuche Y, Blanquart F, Goudenège D et al. Phage-host coevolution in natural populations. Nat Microbiol 2022; 7:1075–1086 [View Article] [PubMed]
    [Google Scholar]
  90. Turner D, Adriaenssens EM, Tolstoy I, Kropinski AM. Phage annotation guide: guidelines for assembly and high-quality annotation. Phage 2021; 2:170–182 [View Article] [PubMed]
    [Google Scholar]
  91. Pan Y-J, Lin T-L, Chen C-T, Chen Y-Y, Hsieh P-F et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep 2015; 5:15573 [View Article] [PubMed]
    [Google Scholar]
  92. Summer EJ, Berry J, Tran TAT, Niu L, Struck DK et al. Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. J Mol Biol 2007; 373:1098–1112 [View Article] [PubMed]
    [Google Scholar]
  93. Berry J, Summer EJ, Struck DK, Young R. The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 2008; 70:341–351 [View Article] [PubMed]
    [Google Scholar]
  94. Kongari R, Rajaure M, Cahill J, Rasche E, Mijalis E et al. Phage spanins: diversity, topological dynamics and gene convergence. BMC Bioinformatics 2018; 19:326 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001065
Loading
/content/journal/mgen/10.1099/mgen.0.001065
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error