1887

Abstract

This study examined the risk factors for, and molecular mechanisms underlying, the increase in carbapenem minimum inhibitory concentrations (MICs) in clinical isolates of .

Consecutive clinical isolates of were collected. The MicroScan WalkAway system detected more than fourfold increases in the MICs of carbapenems in isolates serially recovered from some patients during their clinical course. The clinical risk factors associated with this increase were examined by multiple logistic regression analysis. Western blot analysis and nucleotide sequencing of the gene of 19 clonally related and paired isolates from the same patients were undertaken to examine the mechanisms underlying the increase in MICs.

The results showed that prior use of carbapenems (OR, 2.799; 95 % CI, 1.088–7.200; =0.033) and the use of ventilators or tracheostomies (OR, 2.648; 95 % CI, 1.051–6.671; =0.039) were risk factors for increased carbapenem MICs. Analysis of the underlying mechanisms revealed that loss of functional OprD protein due to mutation of the gene tended to occur in isolates with imipenem MICs of more than 8 µg ml; a reduction in OprD expression was observed in isolates with imipenem MICs of 4 or 8 µg ml. This difference in the resistance mechanism was not correlated with the MICs of meropenem.

This difference in the resistance mechanism of indicates a critical breakpoint at an imipenem MIC of 8 µg ml, in accordance with EUCAST criteria. Reducing carbapenem use will prevent clinical isolates from developing resistance to carbapenems.

Keyword(s): carbapenems , MICs , OprD and P. aeruginosa
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000601
2017-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/11/1562.html?itemId=/content/journal/jmm/10.1099/jmm.0.000601&mimeType=html&fmt=ahah

References

  1. Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK et al. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa . Infect Chemother 2015; 47:81–97 [View Article][PubMed]
    [Google Scholar]
  2. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22:582–610 [View Article][PubMed]
    [Google Scholar]
  3. Trias J, Nikaido H. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa . Antimicrob Agents Chemother 1990; 34:52–57 [View Article][PubMed]
    [Google Scholar]
  4. Hancock RE, Brinkman FS. Function of pseudomonas porins in uptake and efflux. Annu Rev Microbiol 2002; 56:17–38 [View Article][PubMed]
    [Google Scholar]
  5. Fournier D, Richardot C, Müller E, Robert-Nicoud M, Llanes C et al. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa . J Antimicrob Chemother 2013; 68:1772–1780 [View Article][PubMed]
    [Google Scholar]
  6. Rodríguez-Martínez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2009; 53:4783–4788 [View Article][PubMed]
    [Google Scholar]
  7. Franklin R, Cockerill I, Patel JB. M100-S25 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement Wayne, PA: Clinical and Laboratory Standards Institute; 2015 pp. 44–49
    [Google Scholar]
  8. EUCAST 2015; European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters. www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf
  9. Hammami S, Ghozzi R, Burghoffer B, Arlet G, Redjeb S. Mechanisms of carbapenem resistance in non-metallo-beta-lactamase-producing clinical isolates of Pseudomonas aeruginosa from a Tunisian hospital. Pathol Biol 2009; 57:530–535 [View Article][PubMed]
    [Google Scholar]
  10. Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E et al. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother 2007; 51:4329–4335 [View Article][PubMed]
    [Google Scholar]
  11. CDC Standard operating procedure for PulseNet PFGE of Campylobacter jejuni . PulsedNet 20131–12
    [Google Scholar]
  12. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33:2233–2239[PubMed]
    [Google Scholar]
  13. Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol 2012; 50:3773–3776 [View Article][PubMed]
    [Google Scholar]
  14. Yamada K, Kashiwa M, Arai K, Nagano N, Saito R. Evaluation of the modified carbapenem inactivation method and sodium mercaptoacetate-combination method for the detection of metallo-β-lactamase production by carbapenemase-producing Enterobacteriaceae . J Microbiol Methods 2017; 132:112–115 [View Article][PubMed]
    [Google Scholar]
  15. Akhi MT, Khalili Y, Ghotaslou R, Kafil HS, Yousefi S et al. Carbapenem inactivation: a very affordable and highly specific method for phenotypic detection of carbapenemase-producing Pseudomonas aeruginosa isolates compared with other methods. J Chemother 2017; 29:1–6 [View Article][PubMed]
    [Google Scholar]
  16. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70:119–123 [View Article][PubMed]
    [Google Scholar]
  17. Sanbongi Y, Shimizu A, Suzuki T, Nagaso H, Ida T et al. Classification of OprD sequence and correlation with antimicrobial activity of carbapenem agents in Pseudomonas aeruginosa clinical isolates collected in Japan. Microbiol Immunol 2009; 53:361–367 [View Article][PubMed]
    [Google Scholar]
  18. Rivero-Gutiérrez B, Anzola A, Martínez-Augustin O, de Medina FS. Stain-free detection as loading control alternative to Ponceau and housekeeping protein immunodetection in Western blotting. Anal Biochem 2014; 467:1–3 [View Article][PubMed]
    [Google Scholar]
  19. Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F et al. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother 2012; 56:1703–1713 [View Article][PubMed]
    [Google Scholar]
  20. Rodríguez MC, Ruiz del Castillo B, Rodríguez-Mirones C, Romo M, Monteagudo I et al. [Molecular characterization of Pseudomonas aeruginosa isolates in Cantabria, Spain, producing VIM-2 metallo-β-lactamase]. Enferm Infecc Microbiol Clin 2010; 28:99–103 [View Article][PubMed]
    [Google Scholar]
  21. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55:611–622 [View Article][PubMed]
    [Google Scholar]
  22. Dumas JL, van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254:217–225 [View Article][PubMed]
    [Google Scholar]
  23. Llanes C, Pourcel C, Richardot C, Plésiat P, Fichant G et al. Diversity of β-lactam resistance mechanisms in cystic fibrosis isolates of Pseudomonas aeruginosa: a French multicentre study. J Antimicrob Chemother 2013; 68:1763–1771 [View Article][PubMed]
    [Google Scholar]
  24. Charretier Y, Köhler T, Cecchini T, Bardet C, Cherkaoui A et al. Label-free SRM-based relative quantification of antibiotic resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Front Microbiol 2015; 6: [View Article][PubMed]
    [Google Scholar]
  25. Fang ZL, Zhang LY, Huang YM, Qing Y, Cao KY et al. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China. Infect Genet Evol 2014; 21:124–128 [View Article][PubMed]
    [Google Scholar]
  26. Agah Terzi H, Kulah C, Riza Atasoy A, Hakki Ciftci I. Investigation of OprD porin protein levels in carbapenem-resistant Pseudomonas aeruginosa isolates. Jundishapur J Microbiol 2015; 8:10–14 [View Article][PubMed]
    [Google Scholar]
  27. Naenna P, Noisumdaeng P, Pongpech P, Tribuddharat C. Detection of outer membrane porin protein, an imipenem influx channel, in Pseudomonas aeruginosa clinical isolates. Southeast Asian J Trop Med Public Health 2010; 41:614–624[PubMed]
    [Google Scholar]
  28. Lee JY, Ko KS, Ks K. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents 2012; 40:168–172 [View Article][PubMed]
    [Google Scholar]
  29. El Amin N, Giske CG, Jalal S, Keijser B, Kronvall G et al. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 2005; 113:187–196 [View Article][PubMed]
    [Google Scholar]
  30. Mac Aogáin M, Kulah C, Rijnsburger M, Celebi G, Savelkoul PH et al. Characterization of imipenem resistance mechanisms in Pseudomonas aeruginosa isolates from Turkey. Clin Microbiol Infect 2012; 18:E262E265 [View Article][PubMed]
    [Google Scholar]
  31. Ochs MM, Mccusker MP, Bains M, Hancock RE. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 1999; 43:1085–1090[PubMed]
    [Google Scholar]
  32. Köhler T, Epp SF, Curty LK, Pechère JC. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa . J Bacteriol 1999; 181:6300–6305[PubMed]
    [Google Scholar]
  33. Shen J, Pan Y, Fang Y. Role of the outer membrane protein OprD2 in Carbapenem-resistance mechanisms of Pseudomonas aeruginosa . PLoS One 2015; 10:e01399950139999 [View Article][PubMed]
    [Google Scholar]
  34. Pérez FJ, Gimeno C, Navarro D, García-de-Lomas J. Meropenem permeation through the outer membrane of Pseudomonas aeruginosa can involve pathways other than the OprD porin channel. Chemotherapy 1996; 42:210–214 [View Article][PubMed]
    [Google Scholar]
  35. Livermore DM, Pseudomonas O. porins, pumps and carbapenems. J Antimicrob Chemother 2001; 47:247–250 [Crossref]
    [Google Scholar]
  36. Tanimoto K, Tomita H, Fujimoto S, Okuzumi K, Ike Y. Fluoroquinolone enhances the mutation frequency for meropenem-selected carbapenem resistance in Pseudomonas aeruginosa, but use of the high-potency drug doripenem inhibits mutant formation. Antimicrob Agents Chemother 2008; 52:3795–3800 [View Article][PubMed]
    [Google Scholar]
  37. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H et al. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2000; 44:3322–3327 [Crossref]
    [Google Scholar]
  38. Pragasam AK, Raghanivedha M, Anandan S, Veeraraghavan B. Characterization of Pseudomonas aeruginosa with discrepant carbapenem susceptibility profile. Ann Clin Microbiol Antimicrob 2016; 15:12 [View Article][PubMed]
    [Google Scholar]
  39. Riera E, Cabot G, Mulet X, García-Castillo M, del Campo R et al. Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother 2011; 66:2022–2027 [View Article][PubMed]
    [Google Scholar]
  40. Burns JL, Saiman L, Whittier S, Krzewinski J, Liu Z et al. Comparison of two commercial systems (Vitek and MicroScan-WalkAway) for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients. Diagn Microbiol Infect Dis 2001; 39:257–260 [View Article][PubMed]
    [Google Scholar]
  41. Sader HS, Fritsche TR, Jones RN. Accuracy of three automated systems (MicroScan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents. J Clin Microbiol 2006; 44:1101–1104 [View Article][PubMed]
    [Google Scholar]
  42. Lister PD, Wolter DJ, Wickman PA, Reisbig MD. Levofloxacin/imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs. J Antimicrob Chemother 2006; 57:999–1003 [View Article][PubMed]
    [Google Scholar]
  43. Voor AF, Severin JA, Lesaffre EM, Vos MC. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 2014; 58:2626–2637 [View Article][PubMed]
    [Google Scholar]
  44. Zavascki AP, Cruz RP, Goldani LZ. Risk factors for imipenem-resistant Pseudomonas aeruginosa: a comparative analysis of two case-control studies in hospitalized patients. J Hosp Infect 2005; 59:96–101 [View Article][PubMed]
    [Google Scholar]
  45. Lodise TP, Miller C, Patel N, Graves J, Mcnutt LA. Identification of patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk of infection with carbapenem-resistant isolates. Infect Control Hosp Epidemiol 2007; 28:959–965 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000601
Loading
/content/journal/jmm/10.1099/jmm.0.000601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error