1887

Abstract

SARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the pandemic, sequencing analysis has shown that variants of SARS-CoV-2 are being selected as the virus continues to circulate widely within the human population. The predominant drivers of genetic variation within SARS-CoV-2 are single nucleotide polymorphisms (SNPs) caused by polymerase error, potential host factor driven RNA modification, and insertion/deletions (indels) resulting from the discontinuous nature of viral RNA synthesis. While many mutations represent neutral ‘genetic drift’ or have quickly died out, a subset may be affecting viral traits such as transmissibility, pathogenicity, host range, and antigenicity of the virus. In this review, we summarise the current extent of genetic change in SARS-CoV-2, particularly recently emerging variants of concern, and consider the phenotypic consequences of this viral evolution that may impact the future trajectory of the pandemic.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/S008292/1)
    • Principle Award Recipient: WendyS. Barclay
  • Biotechnology and Biological Sciences Research Council (Award BB/K002465/1)
    • Principle Award Recipient: WendyS. Barclay
  • Wellcome Trust (Award 205100)
    • Principle Award Recipient: WendyS. Barclay
  • U.S. Food and Drug Administration (Award 75F40120C00085)
    • Principle Award Recipient: JulianA. Hiscox
  • Medical Research Council (Award MR/N013840/1)
    • Principle Award Recipient: RebekahPenrice-Randal
  • Biotechnology and Biological Sciences Research Council (Award BB/R013071/1)
    • Principle Award Recipient: ThomasPhilip Peacock
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001584
2021-04-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/102/4/jgv001584.html?itemId=/content/journal/jgv/10.1099/jgv.0.001584&mimeType=html&fmt=ahah

References

  1. Dorward DA, Russell CD, UM IH, Elshani M, Armstrong SD et al. Tissue-specific immunopathology in fatal COVID-19. Am J Respir Crit Care Med 2020
    [Google Scholar]
  2. News B 2020; Coronavirus confirmed as pandemic by World Health Organization bbc.co.uk: BBC. https://www.bbc.co.uk/news/world-51839944
  3. World Health Organisation WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/2021
  4. Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C et al. Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 2006; 103:5108–5113 [View Article][PubMed]
    [Google Scholar]
  5. Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC et al. The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2. J Virol 2020; 94:e01246–20 [View Article][PubMed]
    [Google Scholar]
  6. Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P et al. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol 2020; 6:veaa061 [View Article][PubMed]
    [Google Scholar]
  7. Carroll MW, Matthews DA, Hiscox JA, Elmore MJ, Pollakis G et al. Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa. Nature 2015; 524:97–101 [View Article][PubMed]
    [Google Scholar]
  8. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19:155–170 [View Article][PubMed]
    [Google Scholar]
  9. Licitra BN, Millet JK, Regan AD, Hamilton BS, Rinaldi VD et al. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerg Infect Dis 2013; 19:1066–1073 [View Article][PubMed]
    [Google Scholar]
  10. Lam TT-Y, Jia N, Zhang Y-W, Shum MH-H, Jiang J-F et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583:282–285 [View Article][PubMed]
    [Google Scholar]
  11. Li X, Giorgi EE, Marichannegowda MH, Foley B, Xiao C et al. Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci Adv 2020; 6:eabb9153 [View Article][PubMed]
    [Google Scholar]
  12. Zhou H, Chen X, Hu T, Li J, Song H et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol 2020; 30:2196–2203 [View Article][PubMed]
    [Google Scholar]
  13. Zhang Z, Shen L, Gu X. Evolutionary dynamics of MERS-CoV: potential recombination, positive selection and transmission. Sci Rep 2016; 6:25049 [View Article][PubMed]
    [Google Scholar]
  14. Chen F, Knutson TP, Rossow S, Saif LJ, Marthaler DG. Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States. Sci Rep 2019; 9:3953 [View Article][PubMed]
    [Google Scholar]
  15. Zhang XM, Kousoulas KG, Storz J. The hemagglutinin/esterase gene of human coronavirus strain OC43: phylogenetic relationships to bovine and murine coronaviruses and influenza C virus. Virology 1992; 186:318–323 [View Article][PubMed]
    [Google Scholar]
  16. Bakkers MJG, Lang Y, Feitsma LJ, Hulswit RJG, de Poot SAH et al. Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity. Cell Host Microbe 2017; 21:356–366 [View Article][PubMed]
    [Google Scholar]
  17. Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 2015; 89:1954–1964 [View Article][PubMed]
    [Google Scholar]
  18. Nao N, Yamagishi J, Miyamoto H, Igarashi M, Manzoor R et al. Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin. mBio 2017; 8:e02298–16 [View Article][PubMed]
    [Google Scholar]
  19. Jimenez-Guardeño JM, Regla-Nava JA, Nieto-Torres JL, DeDiego ML, Castaño-Rodriguez C et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathog 2015; 11:e1005215 [View Article][PubMed]
    [Google Scholar]
  20. Ke Z, Oton J, Qu K, Cortese M, Zila V et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 2020; 588:498–502 [View Article][PubMed]
    [Google Scholar]
  21. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181:281–292 [View Article][PubMed]
    [Google Scholar]
  22. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579:270–273 [View Article][PubMed]
    [Google Scholar]
  23. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367:1260–1263 [View Article][PubMed]
    [Google Scholar]
  24. Benton DJ, Wrobel AG, Xu P, Roustan C, Martin SR et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020; 588:327–330 [View Article][PubMed]
    [Google Scholar]
  25. Lontok E, Corse E, Machamer CE. Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. J Virol 2004; 78:5913–5922 [View Article][PubMed]
    [Google Scholar]
  26. Madu IG, Roth SL, Belouzard S, Whittaker GR. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. J Virol 2009; 83:7411–7421 [View Article][PubMed]
    [Google Scholar]
  27. Millet JK, Whittaker GR. Host cell entry of middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 2014; 111:15214–15219 [View Article][PubMed]
    [Google Scholar]
  28. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009; 106:5871–5876 [View Article][PubMed]
    [Google Scholar]
  29. Eguia R, Crawford KHD, Stevens-Ayers T, Kelnhofer-Millevolte L, Greninger AL et al. A human coronavirus evolves antigenically to escape antibody immunity. bioRxiv 2020
    [Google Scholar]
  30. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020; 182:812–827 [View Article][PubMed]
    [Google Scholar]
  31. Yang H-C, Chen C-H, Wang J-H, Liao H-C, Yang C-T et al. Analysis of genomic distributions of SARS-CoV-2 reveals a dominant strain type with strong allelic associations. Proc Natl Acad Sci U S A 2020; 117:30679–30686 [View Article][PubMed]
    [Google Scholar]
  32. Zhang L, Jackson CB, Mou H, Ojha A, Peng H et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 2020; 11:6013 [View Article][PubMed]
    [Google Scholar]
  33. van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M et al. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat Commun 2020; 11:5986 [View Article][PubMed]
    [Google Scholar]
  34. Volz E, Hill V, McCrone JT, Price A, Jorgensen D et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 2021; 184:64–75 [View Article][PubMed]
    [Google Scholar]
  35. Li Q, Wu J, Nie J, Zhang L, Hao H et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 2020; 182:1284–1294 [View Article][PubMed]
    [Google Scholar]
  36. Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G et al. The spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. elife 2021; 10:e65365 11 02 2021 [View Article][PubMed]
    [Google Scholar]
  37. Ozono S, Zhang Y, Ode H, Sano K, Tan TS et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun 2021; 12:848 [View Article][PubMed]
    [Google Scholar]
  38. Lorenzo-Redondo R, Nam HH, Roberts SC, Simons LM, Jennings LJ et al. A clade of SARS-CoV-2 viruses associated with lower viral loads in patient upper airways. EBioMedicine 2020; 62:103112 [View Article][PubMed]
    [Google Scholar]
  39. Borges V, Isidro J, Cortes-Martins H, Duarte S, Vieira L et al. Massive dissemination of a SARS-CoV-2 spike Y839 variant in Portugal. Emerg Microbes Infect 2020; 9:2488–2496 [View Article][PubMed]
    [Google Scholar]
  40. Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva Filipe A et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 2021; 184:1171–1187 [View Article][PubMed]
    [Google Scholar]
  41. Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo . Science 2020; 370:1464–1468 [View Article][PubMed]
    [Google Scholar]
  42. BW-Y M, Cremin CJ, Lau S-Y, Deng S, Chen P. SARS-CoV-2 spike D614G variant exhibits highly efficient replication and transmission in hamsters. bioRxiv 2020
    [Google Scholar]
  43. Pohl MO, Busnadiego I, Kufner V, Schmutz S, Zaheri M et al. Distinct phenotypes of SARS-CoV-2 isolates reveal viral traits critical for replication in primary human respiratory cells. bioRxiv 2020
    [Google Scholar]
  44. Plante JA, Liu Y, Liu J, Xia H, Johnson BA et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2020 26 Oct 2020 [View Article][PubMed]
    [Google Scholar]
  45. Zhou B, Thi Nhu Thao T, Hoffmann D, Taddeo A, Ebert N et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 2021 26 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  46. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 2020; 183:739–751 [View Article][PubMed]
    [Google Scholar]
  47. Zhang J, Cai Y, Xiao T, Lu J, Peng H et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. bioRxiv 20202020.10.13.337980 13 Oct 2020 [View Article][PubMed]
    [Google Scholar]
  48. Weissman D, Alameh M-G, de Silva T, Collini P, Hornsby H et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 2021; 29:23–31 [View Article][PubMed]
    [Google Scholar]
  49. Gobeil SMC, Janowska K, McDowell S, Mansouri K, Parks R et al. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Reports
    [Google Scholar]
  50. Benton DJ, Wrobel AG, Roustan C, Borg A, Xu P et al. The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2. Proc Natl Acad Sci U S A 2021; 118: 02 03 2021 [View Article][PubMed]
    [Google Scholar]
  51. Nguyen HT, Zhang S, Wang Q, Anang S, Wang J et al. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. J Virol 2020JVI.02304-20 [View Article][PubMed]
    [Google Scholar]
  52. Brown JC, Goldhill DH, Zhou J, Peacock TP, Frise R et al. Increased transmission of SARS-CoV-2 lineage B.1.1.7 (VOC 2020212/01) is not accounted for by a replicative advantage in primary airway cells or antibody escape. bioRxiv 2021; 2021.02.24.432576:
    [Google Scholar]
  53. MRC/UVRI & LSHTM Uganda Research Unit, Entebbe SARS-CoV-2 Sequencing Group SARS-CoV-2 diversity in Uganda, December 2020 virological.org;; 2020
  54. Bugembe DL, Phan MVT, Ssewanyana I, Semanda P, Nansumba H et al. A SARS-CoV-2 lineage a variant (A.23.1) with altered spike has emerged and is dominating the current Uganda epidemic. medRxiv 2021
    [Google Scholar]
  55. Kim Y-I, Kim S-G, Kim S-M, Kim E-H, Park S-J et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 2020; 27:704–709 [View Article][PubMed]
    [Google Scholar]
  56. Ryan KA, Bewley KR, Fotheringham SA, Slack GS, Brown P et al. Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nat Commun 2021; 12:81 [View Article][PubMed]
    [Google Scholar]
  57. Enserink M. Coronavirus rips through Dutch mink farms, triggering culls. Science 2020; 368:1169 [View Article][PubMed]
    [Google Scholar]
  58. Rabalski L, Kosinski M, Smura T, Aaltonen K, Kant R et al. Detection and molecular characterisation of SARS-CoV-2 in farmed mink (Neovision vision) in Poland. bioRxiv 2020
    [Google Scholar]
  59. Richard M, Kok A, de Meulder D, Bestebroer TM, Lamers MM et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun 2020; 11:3496 [View Article][PubMed]
    [Google Scholar]
  60. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021; 371:172–177 [View Article][PubMed]
    [Google Scholar]
  61. Lassaunière R, Fonager J, Rasmussen M, Frische A, Polacek Strandh C et al. SARS-CoV-2 spike mutations arising in Danish mink and their spread to humans; 2020
  62. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 2020; 182:1295–1310 [View Article][PubMed]
    [Google Scholar]
  63. Welkers MRA, Han AX, Reusken C, Eggink D. Possible host-adaptation of SARS-CoV-2 due to improved ACE2 receptor binding in mink. Virus Evolution 2020
    [Google Scholar]
  64. Conceicao C, Thakur N, Human S, Kelly JT, Logan L et al. The SARS-CoV-2 spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol 2020; 18:e3001016 [View Article][PubMed]
    [Google Scholar]
  65. Hoffmann M, Zhang L, Krüger N, Graichen L, Kleine-Weber H et al. SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. bioRxiv 2021
    [Google Scholar]
  66. Garcia-Beltran WF, Lam EC, Denis KS, Nitido AD, Garcia ZH et al. Circulating SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. medRxiv 2021
    [Google Scholar]
  67. Ministry of Environment and Food of Denmark 2020; COVID-19: all mink in Denmark must be culled. https://en.mfvm.dk/news/news/nyhed/covid-19-all-mink-in-denmark-must-be-culled/
  68. Sealy JE, Yaqub T, Peacock TP, Chang P, Ermetal B et al. Association of increased receptor-binding avidity of influenza A(H9N2) viruses with escape from antibody-based immunity and enhanced zoonotic potential. Emerg Infect Dis 2018; 25:63–72 [View Article][PubMed]
    [Google Scholar]
  69. Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 2009; 326:734–736 [View Article][PubMed]
    [Google Scholar]
  70. Peacock TP, Harvey WT, Sadeyen J-R, Reeve R, Iqbal M. The molecular basis of antigenic variation among A(H9N2) avian influenza viruses. Emerg Microbes Infect 2018; 7:176 [View Article][PubMed]
    [Google Scholar]
  71. Bazykin GA, Stanevich O, Danilenko D, Fadeev A, Komissarova K et al. Emergence of Y453F and Δ69-70HV mutations in a lymphoma patient with long-term COVID-19. virological.org; 2021
  72. Chu H, Chan JF-W, Yuen TT-T, Shuai H, Yuan S et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe 2020; 1:e14–e23 [View Article][PubMed]
    [Google Scholar]
  73. Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med 2020; 12:68 [View Article][PubMed]
    [Google Scholar]
  74. Liu Z, Zheng H, Lin H, Li M, Yuan R et al. Identification of common deletions in the spike protein of SARS-CoV-2. J Virol 2020
    [Google Scholar]
  75. Lau S-Y, Wang P, Mok BW-Y, Zhang AJ, Chu H et al. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg Microbes Infect 2020; 9:837–842 [View Article][PubMed]
    [Google Scholar]
  76. Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, Limpens RWAL, van der Meer Y et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J Gen Virol 2020; 101:925–940 [View Article][PubMed]
    [Google Scholar]
  77. Andrés C, Garcia-Cehic D, Gregori J, Piñana M, Rodriguez-Frias F et al. Naturally occurring SARS-CoV-2 gene deletions close to the spike S1/S2 cleavage site in the viral quasispecies of COVID19 patients. Emerg Microbes Infect 2020; 9:1900–1911 [View Article][PubMed]
    [Google Scholar]
  78. Klimstra WB, Tilston-Lunel NL, Nambulli S, Boslett J, McMillen CM et al. SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients. J Gen Virol 2020; 101:1156-1169 [View Article][PubMed]
    [Google Scholar]
  79. Liu Z, Zheng H, Lin H, Li M, Yuan R et al. Identification of common deletions in the spike protein of severe acute respiratory syndrome coronavirus 2. J Virol 2020; 94: 17 08 2020 [View Article][PubMed]
    [Google Scholar]
  80. Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R et al. The furin cleavage site of SARS-CoV-2 spike protein is a key determinant for transmission due to enhanced replication in airway cells. bioRxiv 2020
    [Google Scholar]
  81. Wong YC, Lau SY, Wang To KK, Mok BWY, Li X et al. Natural transmission of bat-like SARS-CoV-2PRRA variants in COVID-19 patients. Clin Infect Dis 2020 10 Jul 2020 [View Article][PubMed]
    [Google Scholar]
  82. Mykytyn AZ, Breugem TI, Riesebosch S, Schipper D, van den Doel PB et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. Elife 2021; 10:e64508 04 01 2021 [View Article][PubMed]
    [Google Scholar]
  83. Sasaki M, Uemura K, Sato A, Toba S, Sanaki T et al. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog 2021; 17:e1009233 [View Article][PubMed]
    [Google Scholar]
  84. Zhu Y, Feng F, Hu G, Wang Y, Yu Y et al. A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nat Commun 2021; 12:961 [View Article][PubMed]
    [Google Scholar]
  85. Winstone H, Lista MJ, Reid AC, Bouton C, Pickering S et al. The polybasic cleavage site in the SARS-CoV-2 spike modulates viral sensitivity to Type I interferon and IFITM2. J Virol 2021 09 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  86. Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 2021; 591:293–299 [View Article][PubMed]
    [Google Scholar]
  87. Rambaut A, Loman N, Pybus O, Barclay W, Barrett J et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. virological.org; 2020
  88. Volz E, Mishra S, Chand M, Barrett JC, Johnson R et al. Transmission of SARS-CoV-2 lineage B.1.1.7 in England: insights from linking epidemiological and genetic data. medRxiv 2021; 2020.12.30.20249034:
    [Google Scholar]
  89. Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K et al. Increased hazard of mortality in cases compatible with SARS-CoV-2 variant of concern 202012/1 - a matched cohort study. medRxiv 2021; 2021.02.09.21250937:
    [Google Scholar]
  90. Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K et al. Increased hazard of death in community-tested cases of SARS-CoV-2 variant of concern 202012/01. medRxiv 20212021.02.01.21250959 03 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  91. Kidd M, Richter A, Best A, Mirza J, Percival B et al. S-variant SARS-CoV-2 is associated with significantly higher viral loads in samples tested by ThermoFisher TaqPath RT-PCR. medRxiv 2020
    [Google Scholar]
  92. Davies NG, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD et al. Estimated transmissibility and severity of novel SARS-CoV-2 variant of concern 202012/01 in England. medRxiv 2020
    [Google Scholar]
  93. Golubchik T, Lythgoe KA, Hall M, Ferretti L, Fryer HR et al. Early analysis of a potential link between viral load and the N501Y mutation in the SARS-COV-2 spike protein. medRxiv 2021
    [Google Scholar]
  94. Walker AS, Vihta K-D, Gethings O, Pritchard E, Jones J et al. Increased infections, but not viral burden, with a new SARS-CoV-2 variant. medRxiv 2021
    [Google Scholar]
  95. Office for National Statistics Coronavirus (COVID-19) infection survey, UK: 26 February 2021. 2021
  96. Younes M, Hamze K, Nassar H, Makki M, Ghadar M et al. Emergence and fast spread of B.1.1.7 lineage in Lebanon. medRxiv 2021
    [Google Scholar]
  97. Haim-Boukobza S, Roquebert B, Trombert-Paolantoni S, Lecorche E, Verdurme L et al. Rapid SARS-CoV-2 variants spread detected in France using specific RT-PCR testing. medRxiv 2021
    [Google Scholar]
  98. Washington NL, Gangavarapu K, Zeller M, Bolze A, Cirulli ET et al. Genomic epidemiology identifies emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. medRxiv 20212021.02.06.21251159 07 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  99. Brown KA, Gubbay J, Hopkins J, Patel S, Buchan SA et al. Rapid rise of S-gene target failure and the UK variant B.1.1.7 among COVID-19 isolates in the greater Toronto area, Canada. medRxiv 2021
    [Google Scholar]
  100. Choi B, Choudhary MC, Regan J, Sparks JA, Padera RF et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N Engl J Med 2020; 383:2291–2293
    [Google Scholar]
  101. Gu H, Chen Q, Yang G, He L, Fan H et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 2020; 369:1603–1607 [View Article][PubMed]
    [Google Scholar]
  102. Zahradník J, Marciano S, Shemesh M, Zoler E, Chiaravalli J et al. SARS-CoV-2 RBD in vitro evolution follows contagious mutation spread, yet generates an able infection inhibitor. bioRxiv 2021
    [Google Scholar]
  103. Kemp SA, Collier DA, Datir RP, Ferreira IATM, Gayed S et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021 05 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  104. McCarthy KR, Rennick LJ, Nambulli S, Robinson-McCarthy LR, Bain WG et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science 2021; 371:eabf6950 [View Article][PubMed]
    [Google Scholar]
  105. McCallum M, Marco AD, Lempp F, Tortorici MA, Pinto D et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. bioRxiv 20212021.01.14.426475 14 Jan 2021 [View Article][PubMed]
    [Google Scholar]
  106. Xie X, Zou J, Fontes-Garfias CR, Xia H, Swanson KA et al. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera. bioRxiv 2021
    [Google Scholar]
  107. Rees-Spear C, Muir L, Griffith S, Heaney J, Aldon Y et al. The impact of spike mutations on SARS-CoV-2 neutralization. bioRxiv 2021
    [Google Scholar]
  108. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. bioRxiv 2021
    [Google Scholar]
  109. Muik A, Wallisch A-K, Sänger B, Swanson KA, Mühl J et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. bioRxiv 2021
    [Google Scholar]
  110. Rathnasinghe R, Jangra S, Cupic A, Martínez-Romero C, Mulder LCF et al. The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera. medRxiv 20212021.01.19.21249592 20 Jan 2021 [View Article][PubMed]
    [Google Scholar]
  111. Hu J, Peng P, Wang K, Fang L, Luo F-Y et al. Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies. Cell Mol Immunol 2021 25 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  112. Collier DA, De Marco A, Ferreira I, Meng B, Datir R et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 2021
    [Google Scholar]
  113. Public Health England PHE monitoring of the effectiveness of COVID-19 vaccination 2021 22 February 2021.
  114. Xue KS, Moncla LH, Bedford T, Bloom JD. Within-Host evolution of human influenza virus. Trends Microbiol 2018; 26:781–793 [View Article][PubMed]
    [Google Scholar]
  115. Avanzato VA, Matson MJ, Seifert SN, Pryce R, Williamson BN et al. Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell 2020; 183:1901–1912 [View Article][PubMed]
    [Google Scholar]
  116. Khatamzas E, Rehn A, Muenchhoff M, Hellmuth J, Gaitzsch E. Emergence of multiple SARS-CoV-2 mutations in an immunocompromised host. medRxiv 2021
    [Google Scholar]
  117. Borges V, Isidro J, Cunha M, Cochicho D, Martins L et al. Long-term evolution of SARS-CoV-2 in an immunocompromised patient with non-Hodgkin lymphoma. virological.org; 2021
  118. Truong TT, Ryutov A, Pandey U, Yee R, Goldberg L et al. Persistent SARS-CoV-2 infection and increasing viral variants in children and young adults with impaired humoral immunity. medRxiv 20212021.02.27.21252099 02 Mar 2021 [View Article][PubMed]
    [Google Scholar]
  119. Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV et al. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv 20202020.12.28.424451 28 Dec 2020 [View Article][PubMed]
    [Google Scholar]
  120. Kemp S, Datir R, Collier D, Ferreira I, Carabelli A et al. Recurrent emergence and transmission of a SARS-CoV-2 spike deletion ΔH69/V70. bioRxiv. 2020
    [Google Scholar]
  121. Naveca F, Nascimento V, Souza V, Corado A, Nascimento F et al. Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the spike protein. virological.org; 2021
  122. Faria NR, Claro IM, Candido D, Moyses Franco LA, Andrade PS et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. virological.org; 2021
  123. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V et al. Emergence of a SARS-CoV-2 variant of concern with mutations in spike glycoprotein. Nature 2021 09 Mar 2021 [View Article][PubMed]
    [Google Scholar]
  124. Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 2021; 29:463–476 [View Article][PubMed]
    [Google Scholar]
  125. Buss LF, Prete CA, Abrahim CMM, Mendrone A, Salomon T et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science 2021; 371:eabe9728 [View Article][PubMed]
    [Google Scholar]
  126. Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q et al. Preliminary efficacy of the NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. medRxiv 2021
    [Google Scholar]
  127. Resende PC, Bezerra JF, Teixeira de Vasconcelos RH, Arantes I, Appolinario L. Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil. 2020 2021
    [Google Scholar]
  128. Naveca F, da Costa C, Nascimento V, Souza V, Corado A et al. SARS-CoV-2 reinfection by the new variant of concern (VOC) P.1 in Amazonas, Brazil. virological.org; 2021
  129. Nonaka CKV, Franco MM, Gräf T, de Lorenzo Barcia CA, de Ávila Mendonça RN et al. Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg Infect Dis 2021; 27: 19 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  130. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. bioRxiv 2021
    [Google Scholar]
  131. Xia H, Cao Z, Xie X, Zhang X, Chen JY-C et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep 2020; 33:108234 [View Article][PubMed]
    [Google Scholar]
  132. Wise J. Covid-19: the E484K mutation and the risks it poses. BMJ 2021; 372:n359 [View Article][PubMed]
    [Google Scholar]
  133. Annavajhala MK, Mohri H, Zucker JE, Sheng Z, Wang P et al. A novel SARS-CoV-2 variant of concern, B.1.526, identified in New York. medRxiv 20212021.02.23.21252259 25 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  134. Wagner W, Hodcroft EB, Bell SM, Neher RA, Bedford T. Resurgence of SARS-CoV-2 19B clade corresponds with possible convergent evolution. virological.org; 2021
  135. Proposal for lineage within B.1.324 with N501Y, P681H and others.
  136. Tablizo FA, Kim KM, Lapid CM, Castro MJR, Yangzon MSL et al. Genome sequencing and analysis of an emergent SARS-CoV-2 variant characterized by multiple spike protein mutations detected from the central Visayas region of the Philippines. medRxiv 2021
    [Google Scholar]
  137. Public Health England 2021; Variants of concern or under investigation: data up to 10 March 2021. https://www.gov.uk/government/publications/covid-19-variants-genomically-confirmed-case-numbers/variants-distribution-of-cases-data
  138. Zhang W, Davis BD, Chen SS, Sincuir Martinez JM, Plummer JT et al. Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 2021 11 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  139. Liu Z, VanBlargan LA, Bloyet L-M, Rothlauf PW, Chen RE et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe 2021; 29:477–488 [View Article][PubMed]
    [Google Scholar]
  140. Hodcroft EB, Zuber M, Nadeau S, Crawford KHD, Bloom JD et al. Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020. medRxiv 20202020.10.25.20219063 27 Nov 2020 [View Article][PubMed]
    [Google Scholar]
  141. Zhang Y, Zhang J, Chen Y, Luo B, Yuan Y et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through potently downregulating MHC-I. bioRxiv. 2020
    [Google Scholar]
  142. Gong Y-N, Tsao K-C, Hsiao M-J, Huang C-G, Huang P-N et al. SARS-CoV-2 genomic surveillance in Taiwan revealed novel ORF8-deletion mutant and clade possibly associated with infections in Middle East. Emerg Microbes Infect 2020; 9:1457–1466 [View Article][PubMed]
    [Google Scholar]
  143. Su YCF, Anderson DE, Young BE, Linster M, Zhu F et al. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. mBio 2020; 11:e01610–01620 [View Article][PubMed]
    [Google Scholar]
  144. Young BE, Fong S-W, Chan Y-H, Mak T-M, Ang LW et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet 2020; 396:603–611 [View Article][PubMed]
    [Google Scholar]
  145. Gamage AM, Tan KS, Chan WOY, Liu J, Tan CW et al. Infection of human nasal epithelial cells with SARS-CoV-2 and a 382-nt deletion isolate lacking ORF8 reveals similar viral kinetics and host transcriptional profiles. PLoS Pathog 2020; 16:e1009130 [View Article][PubMed]
    [Google Scholar]
  146. Oostra M, de Haan CAM, Rottier PJM. The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8. J Virol 2007; 81:13876–13888 [View Article][PubMed]
    [Google Scholar]
  147. Muth D, Corman VM, Roth H, Binger T, Dijkman R et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep 2018; 8:15177 [View Article][PubMed]
    [Google Scholar]
  148. Kopecky-Bromberg SA, Martinez-Sobrido L, Palese P. 7A protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J Virol 2006; 80:785–793 [View Article][PubMed]
    [Google Scholar]
  149. Taylor JK, Coleman CM, Postel S, Sisk JM, Bernbaum JG et al. Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference. J Virol 2015; 89:11820–11833 [View Article][PubMed]
    [Google Scholar]
  150. Stewart H, Johansen KH, McGovern N, Palmulli R, Carnell GW et al. SARS-CoV-2 spike downregulates tetherin to enhance viral spread. bioRxiv 20212021.01.06.425396 06 Jan 2021 [View Article][PubMed]
    [Google Scholar]
  151. Holland LA, Kaelin EA, Maqsood R, Estifanos B, Wu LI et al. An 81-Nucleotide deletion in SARS-CoV-2 ORF7a identified from sentinel surveillance in Arizona (January to March 2020). J Virol 2020; 94:e00711–00720 [View Article][PubMed]
    [Google Scholar]
  152. Joonlasak K, Batty EM, Kochakarn T, Panthan B, Kümpornsin K et al. Genomic surveillance of SARS-CoV-2 in Thailand reveals mixed imported populations, a local lineage expansion and a virus with truncated ORF7a. Virus Res 2021; 292:198233 [View Article][PubMed]
    [Google Scholar]
  153. Addetia A, Xie H, Roychoudhury P, Shrestha L, Loprieno M et al. Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical SARS-CoV-2 isolates. J Clin Virol 2020; 129:104523 [View Article][PubMed]
    [Google Scholar]
  154. Rosenthal SH, Kagan RM, Gerasimova A, Anderson B, grover D et al. Identification of eight SARS-CoV-2 ORF7a deletion variants in 2,726 clinical specimens. bioRxiv 2020
    [Google Scholar]
  155. Nemudryi A, Nemudraia A, Wiegand T, Nichols J, Snyder DT et al. SARS-CoV-2 genomic surveillance identifies naturally occurring truncations of ORF7a that limit immune suppression. medRxiv 20212021.02.22.21252253 24 Feb 2021 [View Article][PubMed]
    [Google Scholar]
  156. Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci U S A 2020; 117:28344–28354 [View Article][PubMed]
    [Google Scholar]
  157. Riojas MA, Frank AM, Puthuveetil NP, Flores B, Parker M et al. A rare deletion in SARS-CoV-2 Orf6 dramatically alters the predicted three-dimensional structure of the resultant protein. bioRxiv 20202020.06.09.134460 10 Jun 2020 [View Article][PubMed]
    [Google Scholar]
  158. Quéromès G, Destras G, Bal A, Regue H, Burfin G et al. Characterization of SARS-CoV-2 ORF6 deletion variants detected in a nosocomial cluster during routine genomic surveillance, Lyon, France. Emerg Microbes Infect 20211–56
    [Google Scholar]
  159. Delbue S, D'Alessandro S, Signorini L, Dolci M, Pariani E et al. Isolation of SARS-CoV-2 strains carrying a nucleotide mutation, leading to a stop codon in the ORF 6 protein. Emerg Microbes Infect 2021; 10:252–255 [View Article][PubMed]
    [Google Scholar]
  160. Walker AP, Fan H, Keown JR, Margitich V, Grimes JM et al. Enisamium is a small molecule inhibitor of the influenza A virus and SARS-CoV-2 RNA polymerases. bioRxiv 20202020.04.21.053017 06 Jan 2020 [View Article][PubMed]
    [Google Scholar]
  161. Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol 2020; 27:959–966 [View Article][PubMed]
    [Google Scholar]
  162. Benedetti F, Snyder GA, Giovanetti M, Angeletti S, Gallo RC et al. Emerging of a SARS-CoV-2 viral strain with a deletion in NSP1. J Transl Med 2020; 18:329 [View Article][PubMed]
    [Google Scholar]
  163. Sun Y-S, Xu F, An Q, Chen C, Yang Z-N et al. A SARS-CoV-2 variant with the 12-bp deletion at E gene. Emerg Microbes Infect 2020; 9:2361–2367 [View Article][PubMed]
    [Google Scholar]
  164. Kumar BK, Rohit A, Prithvisagar KS, Rai P, Karunasagar I et al. Deletion in the C-terminal region of the envelope glycoprotein in some of the Indian SARS-CoV-2 genome. Virus Res 2021; 291:198222 [View Article][PubMed]
    [Google Scholar]
  165. DeDiego ML, Álvarez E, Almazán F, Rejas MT, Lamirande E et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo . J Virol 2007; 81:1701–1713 [View Article][PubMed]
    [Google Scholar]
  166. Moore SC, Penrice-Randal R, Alruwaili M, Randle N, Armstrong S et al. Amplicon-Based detection and sequencing of SARS-CoV-2 in nasopharyngeal swabs from patients with COVID-19 and identification of deletions in the viral genome that encode proteins involved in interferon antagonism. Viruses 2020; 12:1164 [View Article][PubMed]
    [Google Scholar]
  167. Mourier T, Sadykov M, Carr MJ, Gonzalez G, Hall WW et al. Host-directed editing of the SARS-CoV-2 genome. Biochem Biophys Res Commun 2021; 538:35–39 [View Article][PubMed]
    [Google Scholar]
  168. Salter JD, Bennett RP, Smith HC. The APOBEC protein family: United by structure, divergent in function. Trends Biochem Sci 2016; 41:578–594 [View Article][PubMed]
    [Google Scholar]
  169. Salter JD, Smith HC. Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands. Trends Biochem Sci 2018; 43:606–622 [View Article][PubMed]
    [Google Scholar]
  170. Di Giorgio S, Martignano F, Torcia MG, Mattiuz G, Conticello SG. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci Adv 2020; 6:eabb5813 [View Article][PubMed]
    [Google Scholar]
  171. Placido D, Brown BA, Lowenhaupt K, Rich A, Athanasiadis A. A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1. Structure 2007; 15:395–404 [View Article][PubMed]
    [Google Scholar]
  172. Peacock TP, Benton DJ, James J, Sadeyen J-R, Chang P et al. Immune escape variants of H9N2 influenza viruses containing deletions at the hemagglutinin receptor binding site retain fitness in vivo and display enhanced zoonotic characteristics. J Virol 2017; 91: 15 07 2017 [View Article][PubMed]
    [Google Scholar]
  173. Wang R, Hozumi Y, Zheng YH, Yin C, Wei GW. Host immune response driving SARS-CoV-2 evolution. Viruses 2020; 12:
    [Google Scholar]
  174. Simmonds P. Rampant C→U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses: causes and consequences for their short- and long-term evolutionary trajectories. mSphere 2020; 5:e00408-20 24 06 2020 [View Article][PubMed]
    [Google Scholar]
  175. Kosuge M, Furusawa-Nishii E, Ito K, Saito Y, Ogasawara K. Point mutation bias in SARS-CoV-2 variants results in increased ability to stimulate inflammatory responses. Sci Rep 2020; 10:17766 [View Article][PubMed]
    [Google Scholar]
  176. Klimczak LJ, Randall TA, Saini N, Li J-L, Gordenin DA. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic. PLoS One 2020; 15:e0237689 [View Article][PubMed]
    [Google Scholar]
  177. Wang R, Hozumi Y, Yin C, Wei G-W. Mutations on COVID-19 diagnostic targets. Genomics 2020; 112:5204–5213 [View Article][PubMed]
    [Google Scholar]
  178. Graudenzi A, Maspero D, Angaroni F, Piazza R, Ramazzotti D. Mutational signatures and heterogeneous host response revealed via large-scale characterization of SARS-CoV-2 genomic diversity. iScience 2021; 24:102116 [View Article][PubMed]
    [Google Scholar]
  179. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005; 17:1–14 [View Article][PubMed]
    [Google Scholar]
  180. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526–1529 [View Article][PubMed]
    [Google Scholar]
  181. Baum A, Fulton BO, Wloga E, Copin R, Pascal KE et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 2020; 369:1014–1018 [View Article][PubMed]
    [Google Scholar]
  182. Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 2021; 371:850–854 [View Article][PubMed]
    [Google Scholar]
  183. Jordan B. Vaccination against infectious bronchitis virus: a continuous challenge. Vet Microbiol 2017; 206:137–143 [View Article][PubMed]
    [Google Scholar]
  184. Dong X, Munoz-Basagoiti J, Rickett NY, Pollakis G, Paxton WA et al. Variation around the dominant viral genome sequence contributes to viral load and outcome in patients with Ebola virus disease. Genome Biol 2020; 21:238 [View Article][PubMed]
    [Google Scholar]
  185. Thi Nhu Thao T, Labroussaa F, Ebert N, V'kovski P, Stalder H et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 2020; 582:561–565 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001584
Loading
/content/journal/jgv/10.1099/jgv.0.001584
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error