1887

Abstract

Herpes simplex virus type 1 (HSV-1) establishes a latent infection in sensory neurons from which the virus can periodically reactivate. Whilst latency establishment is thought to result from a failure to express immediate-early genes, we have previously shown that subpopulations of the latent neuronal reservoir have undergone lytic promoter activation prior to latency establishment. In the present study, we have investigated the biological properties of such latently infected neuronal subpopulations using Ai6 fluorescent reporter mice. Using this system we have determined that prior ICP0 or TK promoter activation does not correlate with increased latent virus DNA loads within individual cells and that neurons with evidence of historical lytic cycle promoter activity exhibit a comparable frequency of reactivation to that of the general latent cell population. Comparison of viral DNA content within cells harbouring latent HSV-1 genomes and those undergoing the earliest stages of reactivation has revealed that reactivation can initiate from cells harbouring a wide range of HSV-1 genome copies, but that exiting latency is biased towards cells bearing higher latent virus DNA loads.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000380
2016-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/767.html?itemId=/content/journal/jgv/10.1099/jgv.0.000380&mimeType=html&fmt=ahah

References

  1. Bertke A. S., Swanson S. M., Chen J., Imai Y., Kinchington P. R., Margolis T. P. 2011; A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro. J Virol 85:6669–6677 [View Article][PubMed]
    [Google Scholar]
  2. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. J Gen Virol 18:329–346 [View Article][PubMed]
    [Google Scholar]
  3. Chen X. P., Mata M., Kelley M., Glorioso J. C., Fink D. J. 2002; The relationship of herpes simplex virus latency associated transcript expression to genome copy number: a quantitative study using laser capture microdissection. J Neurovirol 8:204–210 [View Article][PubMed]
    [Google Scholar]
  4. Coleman H. M., Connor V., Cheng Z. S., Grey F., Preston C. M., Efstathiou S. 2008; Histone modifications associated with herpes simplex virus type 1 genomes during quiescence and following ICP0-mediated de-repression. J Gen Virol 89:68–77 [View Article][PubMed]
    [Google Scholar]
  5. Dush M. K., Sikela J. M., Khan S. A., Tischfield J. A., Stambrook P. J. 1985; Nucleotide sequence and organization of the mouse adenine phosphoribosyltransferase gene: presence of a coding region common to animal and bacterial phosphoribosyltransferases that has a variable intron/exon arrangement. Proc Natl Acad Sci U S A 82:2731–2735 [View Article][PubMed]
    [Google Scholar]
  6. Efstathiou S., Preston C. M. 2005; Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111:108–119 [View Article][PubMed]
    [Google Scholar]
  7. Feldman L. T., Ellison A. R., Voytek C. C., Yang L., Krause P., Margolis T. P. 2002; Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A 99:978–983 [View Article][PubMed]
    [Google Scholar]
  8. Halford W. P., Gebhardt B. M., Carr D. J. 1996; Mechanisms of herpes simplex virus type 1 reactivation. J Virol 70:5051–5060[PubMed]
    [Google Scholar]
  9. Hama H., Kurokawa H., Kawano H., Ando R., Shimogori T., Noda H., Fukami K., Sakaue-Sawano A., Miyawaki A. 2011; Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488 [View Article][PubMed]
    [Google Scholar]
  10. Hill T. J., Field H. J., Blyth W. A. 1975; Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. J Gen Virol 28:341–353 [View Article][PubMed]
    [Google Scholar]
  11. Kobiler O., Lipman Y., Therkelsen K., Daubechies I., Enquist L. W. 2010; Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun 1:146 [View Article][PubMed]
    [Google Scholar]
  12. Lilley C. E., Chaurushiya M. S., Boutell C., Everett R. D., Weitzman M. D. 2011; The intrinsic antiviral defense to incoming HSV-1 genomes includes specific DNA repair proteins and is counteracted by the viral protein ICP0.. PLoS Pathog 7:e1002084 [View Article][PubMed]
    [Google Scholar]
  13. Lukashchuk V., Everett R. D. 2010; Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J Virol 84:4026–4040 [View Article][PubMed]
    [Google Scholar]
  14. Ma J. Z., Russell T. A., Spelman T., Carbone F. R., Tscharke D. C. 2014; Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response. PLoS Pathog 10:e1004237 [View Article][PubMed]
    [Google Scholar]
  15. Madisen L., Zwingman T. A., Sunkin S. M., Oh S. W., Zariwala H. A., Gu H., Ng L. L., Palmiter R. D., Hawrylycz M. J.other authors 2010; A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140 [View Article][PubMed]
    [Google Scholar]
  16. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1574 [View Article][PubMed]
    [Google Scholar]
  17. Nicoll M. P., Proença J. T., Connor V., Efstathiou S. 2012a; Influence of herpes simplex virus 1 latency-associated transcripts on the establishment and maintenance of latency in the ROSA26R reporter mouse model. J Virol 86:8848–8858 [View Article][PubMed]
    [Google Scholar]
  18. Nicoll M. P., Proença J. T., Efstathiou S. 2012b; The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 36:684–705 [View Article][PubMed]
    [Google Scholar]
  19. Pierce K. E., Rice J. E., Sanchez J. A., Wangh L. J. 2019; QuantiLyse: reliable DNA amplification from single cells. Biotechniques 32:1106–1111[PubMed]
    [Google Scholar]
  20. Preibisch S., Saalfeld S., Tomancak P. 2009; Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465 [View Article][PubMed]
    [Google Scholar]
  21. Proença J. T., Coleman H. M., Connor V., Winton D. J., Efstathiou S. 2008; A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89:2965–2974 [View Article][PubMed]
    [Google Scholar]
  22. Proença J. T., Coleman H. M., Nicoll M. P., Connor V., Preston C. M., Arthur J., Efstathiou S. 2011; An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurones. J Gen Virol 92:2575–2585 [View Article][PubMed]
    [Google Scholar]
  23. Roizman B., Whitley R. J. 2013; An inquiry into the molecular basis of HSV latency and reactivation. Annu Rev Microbiol 67:355–374 [View Article][PubMed]
    [Google Scholar]
  24. Sawtell N. M. 1997; Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71:5423–5431[PubMed]
    [Google Scholar]
  25. Sawtell N. M., Thompson R. L. 1992; Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol 66:2150–2156[PubMed]
    [Google Scholar]
  26. Sawtell N. M., Poon D. K., Tansky C. S., Thompson R. L. 1998; The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 72:5343–5350[PubMed]
    [Google Scholar]
  27. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S.other authors 2012; Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682 [View Article][PubMed]
    [Google Scholar]
  28. Subkhankulova T., Gilchrist M. J., Livesey F. J. 2008; Modelling and measuring single cell RNA expression levels find considerable transcriptional differences among phenotypically identical cells. BMC Genomics 9:268 [View Article][PubMed]
    [Google Scholar]
  29. Thompson R. L., Sawtell N. M. 2000; Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74:965–974 [View Article][PubMed]
    [Google Scholar]
  30. Wagner E. K., Bloom D. C. 1997; Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10:419–443[PubMed]
    [Google Scholar]
  31. Wakim L. M., Jones C. M., Gebhardt T., Preston C. M., Carbone F. R. 2008; CD8(+) attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunol Cell Biol 86:666–675 [View Article][PubMed]
    [Google Scholar]
  32. Wang K., Lau T. Y., Morales M., Mont E. K., Straus S. E. 2005; Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal Ganglia at the single-cell level. J Virol 79:14079–14087 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000380
Loading
/content/journal/jgv/10.1099/jgv.0.000380
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error