1887

Abstract

The taxonomic position of two novel strains isolated from rhizosphere soil of wild rice ( Griff.) was established using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains WRP6H-15 and WRP9H-5 were closely related to JCM 3146 and TTN02-30. Chemotaxonomic and morphological characteristics of both strains were consistent with members of the genus , while phenotypic properties, genome-based comparisons and phylogenomic analyses distinguished strains WRP6H-15 and WRP9H-5 from their closest phylogenetic relatives. The two strains showed nearly identical 16S rRNA gene sequences (99.9 %). Strain WRP6H-15 showed 68.7 % digital DNA–DNA hybridization, 95.9 % average nucleotide identity (ANI) based on and 96.4 % ANI based on MUMmer to strain WRP9H-5. A phylogenomic tree based on draft genome sequences of the strains and representative of the genus confirmed the phylogenetic relationships. The genomes sizes of strains WRP6H-15 and WRP9H-5 were 9.42 Mb and 9.68 Mb, with DNA G+C contents of 71.5 and 71.3 mol%, respectively. analysis predicted that the strains contain biosynthetic gene clusters encoding for specialized metabolites. Characterization based on chemotaxonomic, phylogenetic, phenotypic and genomic evidence demonstrated that strains WRP6H-15 and WRP9H-5 represent two novel species of the genus , for which the names sp. nov. (type strain WRP6H-15=TBRC 15726=NBRC 115556) and sp. nov. (type strain WRP9H-5=TBRC 15727=NBRC 115557) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006177
2023-11-23
2024-04-28
Loading full text...

Full text loading...

References

  1. Tamura T, Ishida Y, Nozawa Y, Otoguro M, K-i S. Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov., Actinoallomurus luridus sp. nov., Actinoallomurus purpureus sp. nov. and Actinoallomurus yoronensis sp. nov. Int J Syst Evol Microbiol 2009; 59:1867–1874
    [Google Scholar]
  2. Li C, Wang H, Jin P, Zheng W, Chu L et al. Actinoallomurus bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta). Antonie van Leeuwenhoek 2015; 108:453–459
    [Google Scholar]
  3. Indananda C, Thamchaipenet A, Matsumoto A, Inahashi Y, Duangmal K et al. Actinoallomurus oryzae sp. nov., an endophytic actinomycete isolated from roots of a Thai jasmine rice plant. Int J Syst Evol Microbiol 2011; 61:737–741 [View Article] [PubMed]
    [Google Scholar]
  4. Koyama R, Matsumoto A, Inahashi Y, Omura S, Takahashi Y. Isolation of actinomycetes from the root of the plant, Ophiopogon japonicus, and proposal of two new species, Actinoallomurus liliacearum sp. nov. and Actinoallomurus vinaceus sp. nov. J Antibiot 2012; 65:335–340 [View Article] [PubMed]
    [Google Scholar]
  5. Matsumoto A, Fukuda A, Inahashi Y, Ōmura S, Takahashi Y. Actinoallomurus radicium sp. nov., isolated from the roots of two plant species. Int J Syst Evol Microbiol 2012; 62:295–298 [View Article] [PubMed]
    [Google Scholar]
  6. Thamchaipenet A, Indananda C, Bunyoo C, Duangmal K, Matsumoto A et al. Actinoallomurus acaciae sp. nov., an endophytic actinomycete isolated from Acacia auriculiformis A. Cunn. ex Benth. Int J Syst Evol Microbiol 2010; 60:554–559 [View Article] [PubMed]
    [Google Scholar]
  7. Iorio M, Tocchetti A, Santos Cruz JC, Del Gatto G, Brunati C et al. Novel polyethers from screening Actinoallomurus spp. Antibiotics 2018; 7:47 [View Article] [PubMed]
    [Google Scholar]
  8. Pozzi R, Simone M, Mazzetti C, Maffioli S, Monciardini P et al. The genus Actinoallomurus and some of its metabolites. J Antibiot 2011; 64:133–139 [View Article] [PubMed]
    [Google Scholar]
  9. Iorio M, Gentile A, Brunati C, Tocchetti A, Landini P et al. Allopeptimicins: unique antibacterial metabolites generated by hybrid PKS-NRPS, with original self-defense mechanism in Actinoallomurus. RSC Adv 2022; 12:16640–16655 [View Article] [PubMed]
    [Google Scholar]
  10. Pikovskaya R. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiologica 1948; 17:362–370
    [Google Scholar]
  11. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  12. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  13. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  14. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article] [PubMed]
    [Google Scholar]
  15. Community TG. Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 2022; 50:W345–W351 [View Article] [PubMed]
    [Google Scholar]
  16. Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 2014; 30:271–280 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Tarlachkov S, Starodumova I. Taxondc: calculating the similarity value of the 16S rRNA gene sequences of Prokaryotes or ITS regions of fungi. J Bioinf Genom 2017; 3:1–4
    [Google Scholar]
  19. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  25. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2021; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  29. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  32. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  33. Mundie D. The NBS/ISCC Color System Pittsburgh, PA: Polymath Systems; 1995
    [Google Scholar]
  34. Himaman W, Suksaard P, Mingma R, Matsumoto A, Duangmal K. Cryptosporangium eucalypti sp. nov., an actinomycete isolated from Eucalyptus camaldulensis roots. Int J Syst Evol Microbiol 2017; 67:3077–3082 [View Article] [PubMed]
    [Google Scholar]
  35. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  36. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  37. Becker B, Lechevalier M, Lechevalier H. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 1965; 13:236–243 [View Article] [PubMed]
    [Google Scholar]
  38. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  39. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  40. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151:828–837 [View Article] [PubMed]
    [Google Scholar]
  41. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  42. Uchida K, Kudo T, Suzuki K-I, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999; 45:49–56 [View Article] [PubMed]
    [Google Scholar]
  43. Sasser M. Technical Note No. 101 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI, Inc; 2001
    [Google Scholar]
  44. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006177
Loading
/content/journal/ijsem/10.1099/ijsem.0.006177
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error