1887

Abstract

A Gram-negative, aerobic, motile with paired polar flagella and rod-shaped bacterium strain (56D2) was isolated from tobacco planting soil in Yunnan, PR China. Major fatty acids were C 7 (summed feature 3), C and C7 (summed feature 8). The polar lipid profile of strain 56D2 consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid and one unidentified glycolipid. Moreover, strain 56D2 contained ubiquinone Q-8 as the sole respiratory quinone. 16S rRNA gene sequence analysis showed that strain 56D2 was closely related to members of the genus and the two type strains with the highest sequence identities were LMG 6866 (98.36 %) and K-288 (98.22 %). The 16S rRNA gene sequence identities between strain 56D2 and other members of the genus were below 98.00 %. Genome sequencing revealed a genome size of 5.87 Mb and a G+C content of 63.7 mol%. The average nucleotide identity values between strain 56D2 and K-288, LMG 6866 and CCUG 46789 were less than 95 %, and the DNA–DNA hybridization values (yielded by formula 2) were less than 70 %. Based on these data, we conclude that strain 56D2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of sp. nov. is 56D2 (=CCTCC AB 2021466=GDMCC 1.2886=JCM 35178).

Funding
This study was supported by the:
  • Yunnan Provincial Tobacco Monopoly Bureau; National Natural Science Foundation of China (Award 2020530000241013, 2018530000241006, 2019530000241007 and 2020530000241012; 32260702)
    • Principle Award Recipient: LUCAN-HUA
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005622
2022-12-13
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/12/ijsem005622.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005622&mimeType=html&fmt=ahah

References

  1. Ralston E, Palleroni NJ, Doudoroff M. Pseudomonas pickettii, a new species of clinical origin related to Pseudomonas solanacearum. Int J Syst Bacteriol 1973; 23:15–19 [View Article]
    [Google Scholar]
  2. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov. Microbiol Immunol 1995; 39:897–904
    [Google Scholar]
  3. De Baere T, Steyaert S, Wauters G, Des Vos P, Goris J et al. Classification of Ralstonia pickettii biovar 3/’thomasii’ strains (Pickett 1994) and of new isolates related to nosocomial recurrent meningitis as Ralstonia mannitolytica sp. nov. Int J Syst Evol Microbiol 2001; 51:547–558 [View Article] [PubMed]
    [Google Scholar]
  4. Vaneechoutte M, Kämpfer P, De Baere T, Falsen E, Verschraegen G. Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 2004; 54:317–327 [View Article]
    [Google Scholar]
  5. Vandamme P, Coenye T. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 2004; 54:2285–2289 [View Article] [PubMed]
    [Google Scholar]
  6. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  7. Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L et al. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol 2014; 64:3087–3103 [View Article]
    [Google Scholar]
  8. Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2021; 49:D10–D17 [View Article] [PubMed]
    [Google Scholar]
  9. Coenye T, Goris J, De Vos P, Vandamme P, LiPuma JJ. Classification of Ralstonia pickettii-like isolates from the environment and clinical samples as Ralstonia insidiosa sp. nov. Int J Syst Evol Microbiol 2003; 53:1075–1080 [View Article] [PubMed]
    [Google Scholar]
  10. Zulperi D, Sijam K, Ahmad ZAM, Awang Y, Mohd Hata E. Phylotype classification of Ralstonia solanacearumbiovar 1 strains isolated from banana (Musa spp) in malaysia. Archives of Phytopathology and Plant Protection 2014; 47:2352–2364
    [Google Scholar]
  11. Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E et al. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 2010; 11:379 [View Article]
    [Google Scholar]
  12. Remenant B, de Cambiaire J-C, Cellier G, Jacobs JM, Mangenot S et al. Ralstonia syzygii, the blood disease bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLoS One 2011; 6:e24356 [View Article]
    [Google Scholar]
  13. Lu C-H, Li J-Y, Mi M-G, Lin Z-L, Jiang N et al. Complete genome sequence of Ralstonia syzygii subsp. indonesiensis strain LLRS-1, isolated from Wilted tobacco in China. Phytopathology 2021; 111:2392–2395 [View Article] [PubMed]
    [Google Scholar]
  14. Paudel S, Dobhal S, Alvarez AM, Arif M. Taxonomy and phylogenetic research on Ralstonia solanacearum species complex: a complex pathogen with extraordinary economic consequences. Pathogens 2020; 9:E886 [View Article] [PubMed]
    [Google Scholar]
  15. Peeters N, Guidot A, Vailleau F, Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 2013; 14:651–662 [View Article] [PubMed]
    [Google Scholar]
  16. Abdurahman A, Parker ML, Kreuze J, Elphinstone JG, Struik PC et al. Molecular epidemiology of Ralstonia solanacearum species complex strains causing bacterial Wilt of potato in Uganda. Phytopathology 2019; 109:1922–1931 [View Article] [PubMed]
    [Google Scholar]
  17. Sanchez Perez A, Mejia L, Fegan M, Allen C. Diversity and distribution of Ralstonia solanacearum strains in Guatemala and rare occurrence of tomato fruit infection. Plant Pathology 2008; 57:320–331 [View Article]
    [Google Scholar]
  18. Roberts SJ, Eden-Green SJ, Jones P, Ambler DJ. Pseudomonas syzygii sp. nov., the cause of Sumatra disease of cloves. Syst Appl Microbiol 1990; 13:34–43 [View Article]
    [Google Scholar]
  19. Edengreen SJ. Diversity of Pseudomonas solanacearum and related bacteria in southeast Asia – new directions for Moko disease. In International Symposium on Bacterial Wilt 1992
    [Google Scholar]
  20. Ray JD, Subandiyah S, Rincon-Florez VA, Prakoso AB, Mudita IW et al. Geographic expansion of banana blood disease in southeast Asia. Plant Dis 2021; 105:2792–2800 [View Article] [PubMed]
    [Google Scholar]
  21. Davis RI, Moore NY, Fegan M. Blood disease and panama disease: two newly introduced and grave threats to banana production on the island of New Guinea. Paper presented at the Food security for Papua New Guinea Proceedings of the Papua New Guinea Food and Nutrition 2000 ConferencePNG University of Technology, Lae, Papua New Guinea 2000
    [Google Scholar]
  22. Gavrish E, Bollmann A, Epstein S, Lewis K. A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 2008; 72:257–262 [View Article] [PubMed]
    [Google Scholar]
  23. Berdy B, Spoering AL, Ling LL, Epstein SS. In situ cultivation of previously uncultivable microorganisms using the ichip. Nat Protoc 2017; 12:2232–2242 [View Article] [PubMed]
    [Google Scholar]
  24. Clayton RA, Sutton G, Hinkle PS, Bult C, Fields C. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol 1995; 45:595–599 [View Article] [PubMed]
    [Google Scholar]
  25. Sayers EW, Cavanaugh M, Clark K, Pruitt KD, Schoch CL et al. GenBank. Nucleic Acids Res 2021; 49:D92–D96 [View Article] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  30. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  31. Lu C-H, Han T-H, Jiang N, Gai X-T, Cao Z-H. Pseudomonas lijiangensis sp. nov., a novel phytopathogenic bacterium isolated from black spots of tobacco in Yunnan, China. Int J Syst Evol Microbiol 2022 [View Article]
    [Google Scholar]
  32. Kelman A. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 1954; 44:
    [Google Scholar]
  33. Elphinstone JG, Hennessy J, Wilson JK, Stead DE. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bulletin 1996; 26:663–678 [View Article]
    [Google Scholar]
  34. Kelman A, Hruschka J. The role of motility and aerotaxis in the selective increase of avirulent bacteria in still broth cultures of Pseudomonas solanacearum. J Gen Microbiol 1973; 76:177–188 [View Article] [PubMed]
    [Google Scholar]
  35. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774 [View Article] [PubMed]
    [Google Scholar]
  36. Sasser M. Technical Note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI; 1990 pp 1–7
    [Google Scholar]
  37. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981; 51:129–134 [View Article] [PubMed]
    [Google Scholar]
  39. Minnikin DE, Abdolrahimzadeh H. Thin-layer chromatography of bacterial lipids on sodium acetate-impregnated silica gel. J Chromatogr 1971; 63:452–454 [View Article] [PubMed]
    [Google Scholar]
  40. Lu C, Nakayasu ES, Zhang LQ, Luo ZQ. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation. Sci Signal 2016; 9:ra11 [View Article]
    [Google Scholar]
  41. Lu CH, McCloskey A, Chen FR, Nakayasu ES, Zhang LQ et al. Fic proteins inhibit the activity of topoisomerase IV by AMPylation in diverse bacteria. Front Microbiol 2020; 11:2084 [View Article]
    [Google Scholar]
  42. Daligault HE, Davenport KW, Minogue TD, Broomall SM, Bruce DC et al. Draft genome assembly of Ralstonia pickettii type strain K-288 (ATCC 27853). Genome Announc 2014; 2:e00973–00914 [View Article]
    [Google Scholar]
  43. Remenant B, Babujee L, Lajus A, Médigue C, Prior P et al. Sequencing of K60, type strain of the major plant pathogen Ralstonia solanacearum. J Bacteriol 2012; 194:2742–2743 [View Article] [PubMed]
    [Google Scholar]
  44. Prakoso AB, Joko T, Soffan A, Sari JP, Ray JD. Draft genome sequence of Ralstonia syzygii subsp. celebesensis from Indonesia, the causal agent of blood disease of banana. Phytopathology 2022; 112:1584–1586 [View Article]
    [Google Scholar]
  45. Poehlein A, Kusian B, Friedrich B, Daniel R, Bowien B. Complete genome sequence of the type strain Cupriavidus necator N-1. J Bacteriol 2011; 193:5017 [View Article]
    [Google Scholar]
  46. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  47. Sievers F, Higgins DG. The Clustal Omega multiple alignment package. Methods Mol Biol 2021; 2231:3–16 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005622
Loading
/content/journal/ijsem/10.1099/ijsem.0.005622
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error