1887

Abstract

Strain Q3-56, isolated from Arctic tundra soil, was found to be a Gram-stain-negative, yellow-pigmented, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain Q3-56 grew optimally at pH 7.0 and 28 °C. The strain could tolerate up to 1 % (w/v) NaCl with optimum growth in the absence of NaCl. The strain was not sensitive to oxacillin and ceftazidime. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Q3-56 belonged to the genus . Strain Q3-56 showed the highest sequence similarities to T17 (96.58 %), Gsoil 043 (96.50 %), NS28 (96.43 %) and QTA69 (96.43 %). The predominant respiratory isoprenoid quinone was identified as MK-7, The polar lipid profile of strain Q3-56 was found to contain one phosphatidylethanolamine, three unidentified aminolipids, three unidentified lipids and one unidentified phospholipid. The G+C content of the genomic DNA was determined to be 49.1 mol%. The main fatty acids were summed feature 3 (comprising C 7/C 6), iso-C, C 5 and iso-C 3-OH. On the basis of the evidence presented in this study, a novel species of the genus , sp. nov., is proposed, with the type strain Q3-56 (=CCTCC AB 2019271=KCTC 72739). Emended descriptions of , and are also provided.

Funding
This study was supported by the:
  • chinese polar scientific strategy research fund (Award IC201706)
    • Principle Award Recipient: FangPeng
  • national natural science foundation of china (Award Grant No. 42076230)
    • Principle Award Recipient: FangPeng
  • r&d infrastructure and facility development program of the ministry of science and technology of the people’s republic of china (Award Grant No. NIMR-2020-8)
    • Principle Award Recipient: FangPeng
  • national key r&d program of china (Award 2018YFC1406701)
    • Principle Award Recipient: FangPeng
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005103
2021-11-30
2024-04-19
Loading full text...

Full text loading...

References

  1. Chelius MK, Triplett EW. Dyadobacter fermentans gen. nov., sp. nov., a novel Gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 2000; 50:751–758 [View Article] [PubMed]
    [Google Scholar]
  2. Reddy GSN, Garcia-Pichel F. Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol 2005; 55:1295–1299 [View Article] [PubMed]
    [Google Scholar]
  3. Song Z, Song Y, Yu Y, Choi L, Wang G et al. Dyadobacter luticola sp. nov., isolated from a sewage sediment sample. Int J Syst Evol Microbiol 2019; 69:465–469 [View Article] [PubMed]
    [Google Scholar]
  4. Tang Y, Dai J, Zhang L, Mo Z, Wang Y et al. Dyadobacter alkalitolerans sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2009; 59:60–64 [View Article] [PubMed]
    [Google Scholar]
  5. Baik KS, Kim MS, Kim EM, Kim HR, Seong CN. Dyadobacter koreensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007; 57:1227–1231 [View Article] [PubMed]
    [Google Scholar]
  6. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F et al. Dyadobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2010; 60:1640–1643 [View Article] [PubMed]
    [Google Scholar]
  7. Hu XL, Zhou D, Gao H, Huang FQ, Li H et al. Dyadobacter bucti sp. nov., isolated from subsurface sediment. Int J Syst Evol Microbiol 2020; 70:2281–2287 [View Article] [PubMed]
    [Google Scholar]
  8. Qu J-H, Yue Y-F, Zhou J, Qu L-B, Wang L-F. Dyadobacter flavalbus sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2020; 70:1064–1070 [View Article] [PubMed]
    [Google Scholar]
  9. Tian M, Zhang RG, Han L, Zhao XM, Lv J. Dyadobacter sediminis sp. nov., isolated from a subterranean sediment sample. Int J Syst Evol Microbiol 2015; 65:827–832 [View Article] [PubMed]
    [Google Scholar]
  10. Chun J, Kang JY, Joung Y, Kim H, Joh K et al. Dyadobacter jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:1788–1792 [View Article] [PubMed]
    [Google Scholar]
  11. Shen L, Liu Y, Yao T, Wang N, Xu B et al. Dyadobacter tibetensis sp. nov., isolated from glacial ice core. Int J Syst Evol Microbiol 2013; 63:3636–3639 [View Article] [PubMed]
    [Google Scholar]
  12. Wang L, Chen L, Ling Q, Li CC, Tao Y et al. Dyadobacter jiangsuensis sp. nov., a methyl red degrading bacterium isolated from a dye-manufacturing factory. Int J Syst Evol Microbiol 2015; 65:1138–1143 [View Article] [PubMed]
    [Google Scholar]
  13. Gao JL, Sun P, Wang XM, Qiu TL, Lv FY et al. Dyadobacter endophyticus sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016; 66:4022–4026 [View Article] [PubMed]
    [Google Scholar]
  14. Dahal RH, Kim J. Dyadobacter flavus sp. nov.and Dyadobacter terricola sp. nov., two novel members of the family Cytophagaceae isolated from forest soil. Arch Microbiol 2018; 200:1067–1074 [View Article] [PubMed]
    [Google Scholar]
  15. Chaudhary DK, Dahal RH, Kim J. Dyadobacter psychrotolerans sp. nov.and Dyadobacter frigoris sp. nov., two novel psychrotolerant members of the family Cytophagaceae isolated from Arctic soil. Int J Syst Evol Microbiol 2020; 70:569–575 [View Article] [PubMed]
    [Google Scholar]
  16. Lane DJ. 16S/23S rRNA sequencing. Stackebrandt E, Goodfellow M. eds In Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–147
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  18. Chun J, Lee JH, Jung Y, Kim M, Kim S. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [View Article] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetictrees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  26. Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol 2013; 14:405 [View Article] [PubMed]
    [Google Scholar]
  27. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  28. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 2016; 13:1050–1054 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Yoon S-H, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  31. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  32. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  34. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  35. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–214 [View Article] [PubMed]
    [Google Scholar]
  36. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article]
    [Google Scholar]
  37. Doetsch RN. Determinative methods of light microscopy. Man Methods Gen Bacteriol 1981; 21–33:
    [Google Scholar]
  38. Bowman JP. Description of Cellulophaga algicola sp nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article] [PubMed]
    [Google Scholar]
  39. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  40. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1974
    [Google Scholar]
  41. Moore DD, Dowhan D. Preparation and analysis of DNA. Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG. eds In Current Protocols in Molecular Biology New York: Wiley; 1995 pp 2–11
    [Google Scholar]
  42. Weeks OB. Preliminary studies of the pigments of Flavobacterium breve NCTC 11099 and Flavobacterium odoratum NCTC 11036. Reichenbach H, Weeks OB. eds In the Flavobacterium–Cytophaga Group Weinheim: Gesellschaft für Biotechnologische Forshung; 1981 pp 108–114
    [Google Scholar]
  43. Kojima H, Watanabe M, Tokizawa R, Shinohara A, Fukui M. Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol 2016; 66:4821–4825 [View Article] [PubMed]
    [Google Scholar]
  44. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1997; 100:221–230
    [Google Scholar]
  45. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article] [PubMed]
    [Google Scholar]
  46. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  47. Tindall BJ. Lipid-composition of halobacterium-lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005103
Loading
/content/journal/ijsem/10.1099/ijsem.0.005103
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error