1887

Abstract

The taxonomic status of two previously characterized strains (58S1 and S23321) isolated from contrasting habitats in Canada and Japan was verified by genomic and phenotypic analyses. Phylogenetic analyses of five and 27 concatenated protein-encoding core gene sequences placed both strains in a highly supported lineage distinct from named species in the genus with as the closest relative. Average nucleotide identity values of genome sequences between the test and reference strains were between 84.5 and 94.2 %, which is below the threshold value for bacterial species circumscription. The complete genomes of strains 58S1 and S23321 consist of single chromosomes of 7.30 and 7.23 Mbp, respectively, and do not have symbiosis islands. The genomes of both strains have a G+C content of 64.3 mol%. Present in the genome of these strains is a photosynthesis gene cluster (PGC) containing key photosynthesis genes. A tRNA gene and its partial tandem duplication were found at the boundaries of the PGC region in both strains, which is likely the hallmark of genomic island insertion. Key nitrogen-fixation genes were detected in the genomes of both strains, but nodulation and type III secretion system genes were not found. Sequence analysis of the nitrogen fixation gene, , placed 58S1 and S23321 in a novel lineage distinct from described species. Data for phenotypic tests, including growth characteristics and carbon source utilization, supported the sequence-based analyses. Based on the data presented here, a novel species with the name sp. nov. is proposed with 58S1 (=LMG 31545=HAMBI 3725) as the type strain.

Funding
This study was supported by the:
  • Japan Society for the Promotion of Science (Award JSPS KAKENHI 18H02112)
    • Principle Award Recipient: Kiwamu Minamisawa
  • Agriculture and Agri-Food Canada (Award J-002272)
    • Principle Award Recipient: Eden S. P. Bromfield
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004380
2020-08-17
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/5063.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004380&mimeType=html&fmt=ahah

References

  1. Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA et al. Genome-informed Bradyrhizobium taxonomy: where to from here?. Syst Appl Microbiol 2019; 42:427–439 [View Article][PubMed]
    [Google Scholar]
  2. Bromfield ESP, Cloutier S, Tambong JT, Tran Thi TV. Soybeans inoculated with root zone soils of Canadian native legumes harbour diverse and novel Bradyrhizobium spp. that possess agricultural potential. Syst Appl Microbiol 2017; 40:440–447 [View Article][PubMed]
    [Google Scholar]
  3. Rivas R, Willems A, Palomo JL, García-Benavides P, Mateos PF et al. Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol 2004; 54:1271–1275 [View Article][PubMed]
    [Google Scholar]
  4. Cloutier S, Bromfield ESP. Analysis of the complete genome sequence of the widely studied strain Bradyrhizobium betae PL7HG1Treveals the presence of photosynthesis genes and a putative plasmid. Microbiol Resour Announc 2019; 8:e01282–19 [View Article][PubMed]
    [Google Scholar]
  5. Okubo T, Tsukui T, Maita H, Okamoto S, Oshima K et al. Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs. Microbes Environ 2012; 27:306–315 [View Article][PubMed]
    [Google Scholar]
  6. Tang J, Bromfield ESP, Rodrigue N, Cloutier S, Tambong JT. Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2012; 2:2943–2961 [View Article][PubMed]
    [Google Scholar]
  7. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–D642 [View Article][PubMed]
    [Google Scholar]
  8. Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 2020; 37:291–294 [View Article][PubMed]
    [Google Scholar]
  9. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE New Orleans, LA: 14 Nov. 2010 pp 1–8
    [Google Scholar]
  10. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  11. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 2004; 20:407–415 [View Article][PubMed]
    [Google Scholar]
  12. Yu X, Cloutier S, Tambong JT, Bromfield ESP. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 2014; 64:3202–3207 [View Article][PubMed]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  14. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  15. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microb 1863; iol 2019:1852
    [Google Scholar]
  16. Rivas R, Martens M, de Lajudie P, Willems A. Multilocus sequence analysis of the genus Bradyrhizobium . Syst Appl Microbiol 2009; 32:101–110 [View Article][PubMed]
    [Google Scholar]
  17. Parker MA. The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia . Microb Ecol 2015; 69:630–640 [View Article][PubMed]
    [Google Scholar]
  18. Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000; 28:1102–1104 [View Article][PubMed]
    [Google Scholar]
  19. Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J et al. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 2014; 64:2072–2078 [View Article][PubMed]
    [Google Scholar]
  20. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46:2159–2168 [View Article][PubMed]
    [Google Scholar]
  21. Nguyen HDT, Cloutier S, Bromfield ESP. Complete genome sequence of Bradyrhizobium ottawaense OO99T, an efficient nitrogen-fixing symbiont of soybean. Microbiol Resour Announc 2018; 7:e0147718 [View Article][PubMed]
    [Google Scholar]
  22. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  23. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  24. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article][PubMed]
    [Google Scholar]
  25. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article][PubMed]
    [Google Scholar]
  26. de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363–3368 [View Article]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  29. Kerepesi C, Bánky D, Grolmusz V. AmphoraNet: the Webserver implementation of the AMPHORA2 metagenomic workflow suite. Gene 2014; 533:538–540 [View Article][PubMed]
    [Google Scholar]
  30. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [View Article][PubMed]
    [Google Scholar]
  31. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  32. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article][PubMed]
    [Google Scholar]
  33. Bromfield ESP, Cloutier S, Nguyen HDT. Description and complete genome sequences of Bradyrhizobium symbiodeficiens sp. nov., a non-symbiotic bacterium associated with legumes native to Canada. Int J Syst Evol Microbiol 2020; 70:442–449 [View Article][PubMed]
    [Google Scholar]
  34. Lindström K, Amsalu AA, Mousavi SA. Evolution and taxonomy of nitrogen-fixing organisms with emphasis on rhizobia. In de Bruijn FJ. editor Biological Nitrogen Fixation Hoboken, NJ: John Wiley & Sons; 2015 pp 21–38
    [Google Scholar]
  35. Ohtsubo Y, Ikeda-Ohtsubo W, Nagata Y, Tsuda M. GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC Bioinformatics 2008; 9:376 [View Article][PubMed]
    [Google Scholar]
  36. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 2002; 9:189–197 [View Article][PubMed]
    [Google Scholar]
  37. Bromfield ESP, Cloutier S, Nguyen HDT. Description and complete genome sequence of Bradyrhizobium amphicarpaeae sp. nov., harbouring photosystem and nitrogen-fixation genes. Int J Syst Evol Microbiol 2019; 69:2841–2848 [View Article][PubMed]
    [Google Scholar]
  38. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris . Nat Biotechnol 2004; 22:55–61 [View Article][PubMed]
    [Google Scholar]
  39. Okubo T, Fukushima S, Itakura M, Oshima K, Longtonglang A et al. Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica . Appl Environ Microbiol 2013; 79:2542–2551 [View Article][PubMed]
    [Google Scholar]
  40. Harr R, Hagblom P, Gustafsson P. Two‐dimensional graphic analysis of DNA sequence homologies. Nucleic Acids Res 1982; 10:365–374 [View Article][PubMed]
    [Google Scholar]
  41. Bertelli C, Laird MR, Williams KP. Simon Fraser University Research Computing Group, Lau BY, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucl Acids Res 2017; 45:W30–W35
    [Google Scholar]
  42. Rodriguez-Valera F, Martin-Cuadrado A-B, López-Pérez M. Flexible genomic islands as drivers of genome evolution. Curr Opin Microbiol 2016; 31:154–160 [View Article][PubMed]
    [Google Scholar]
  43. Bertelli C, Tilley KE, Brinkman FSL. Microbial genomic island discovery, visualization and analysis. Brief Bioinform 2019; 20:1685–1698 [View Article][PubMed]
    [Google Scholar]
  44. Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 2002; 30:866–875 [View Article][PubMed]
    [Google Scholar]
  45. Liu Y, Zheng Q, Lin W, Jiao N. Characteristics and evolutionary analysis of photosynthetic gene clusters on extrachromosomal replicons: from streamlined plasmids to chromids. mSystems 2019; 4:358–370 [View Article][PubMed]
    [Google Scholar]
  46. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article][PubMed]
    [Google Scholar]
  47. Garrity GM, Bell JA, Lilburn T, Krieg NR. Family VII. Bradyrhizobiaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology vol. 2, 2nd ed. New York: Springer; 2005 p 438
    [Google Scholar]
  48. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock microbial identification system. Int J Syst Evol Microbiol 2000; 50:787–801 [View Article][PubMed]
    [Google Scholar]
  49. Kaneko T, Maita H, Hirakawa H, Uchiike N, Minamisawa K et al. Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. Genes 2011; 2:763–787 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004380
Loading
/content/journal/ijsem/10.1099/ijsem.0.004380
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error