1887

Abstract

The genus is an important group of plant pathogens that currently comprises 10 recognized species. Although most isolates originated from infected cultivated plants, they are also isolated from water. The genomic sequence of the Australian strain NCPPB 569 clearly established its separation from the previously characterized species. The average nucleotide identity and digital DNA–DNA hybridization values obtained by comparing strain NCPPB 569 with strains of characterized species were lower than 87 and 32 %, respectively, supporting the delineation of a new species. The name sp. nov. is proposed for this taxon with the type strain NCPPB 569 (=CFBP 8731). Two other strains isolated in Australia, CFBP 1537 and CFBP 2040, also belong to this species. Phenotypic and genomic comparisons enabled the identification of traits distinguishing isolates from strains of other species.

Funding
This study was supported by the:
  • Université Claude Bernard Lyon 1 (FR)
    • Principle Award Recipient: Nicole Cotte-Pattat
  • INSA Lyon
    • Principle Award Recipient: Nicole Cotte-Pattat
  • CNRS
    • Principle Award Recipient: Nicole Cotte-Pattat
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004306
2020-07-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/8/4508.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004306&mimeType=html&fmt=ahah

References

  1. Ma B, Hibbing ME, Kim H-S, Reedy RM, Yedidia I et al. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya . Phytopathology 2007; 97:1150–1163 [View Article][PubMed]
    [Google Scholar]
  2. Charkowski A, Blanco C, Condemine G, Expert D, Franza T et al. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annu Rev Phytopathol 2012; 50:425–449 [View Article][PubMed]
    [Google Scholar]
  3. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article][PubMed]
    [Google Scholar]
  4. Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W et al. Transfer of Pectobacterium chrysanthemi (Burkholder, et al. 1953) Brenner, et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov.. Int J Syst Evol Microbiol 2005:1415–1427
    [Google Scholar]
  5. Brady CL, Cleenwerck I, Denman S, Venter SN, Rodríguez-Palenzuela P et al. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii . Int J Syst Evol Microbiol 2012; 62:1592–1602 [View Article][PubMed]
    [Google Scholar]
  6. van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N et al. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2014; 64:768–774 [View Article][PubMed]
    [Google Scholar]
  7. Tian Y, Zhao Y, Yuan X, Yi J, Fan J et al. Dickeya fangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). Int J Syst Evol Microbiol 2016; 66:2831–2835 [View Article][PubMed]
    [Google Scholar]
  8. Parkinson N, DeVos P, Pirhonen M, Elphinstone J. Dickeya aquatica sp. nov., isolated from waterways. Int J Syst Evol Microbiol 2014; 64:2264–2266 [View Article][PubMed]
    [Google Scholar]
  9. Hugouvieux-Cotte-Pattat N, Jacot-des-Combes C, Briolay J. Dickeya lacustris sp. nov., a water-living pectinolytic bacterium isolated from lakes in France. Int J Syst Evol Microbiol 2019; 69:721–726 PMID [View Article][PubMed]
    [Google Scholar]
  10. Oulghazi S, Pédron J, Cigna J, Lau YY, Moumni M et al. Dickeya undicola sp. nov., a novel species for pectinolytic isolates from surface waters in Europe and Asia. Int J Syst Evol Microbiol 2019; 69:2440–2444 [View Article][PubMed]
    [Google Scholar]
  11. Steindl DRL. Bacterial mottle. In Hughes CG, Abbott EV, Wismer CA. (editors) Sugar Cane Diseases of the World 2 Elsevier Publishing Company.; 1964 pp 2–11
    [Google Scholar]
  12. Dowson WJ, Hayward AC. The bacterial mottle pathogen of Queensland sugar cane. Intern Sugar J 1960; 62:275
    [Google Scholar]
  13. Pritchard L, Humphris S, Saddler GS, Elphinstone JG, Pirhonen M et al. Draft genome sequences of 17 isolates of the plant pathogenic bacterium Dickeya . Genome Announc 2013; 1:e00978–13 [View Article][PubMed]
    [Google Scholar]
  14. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24
    [Google Scholar]
  15. Duprey A, Taib N, Leonard S, Garin T, Flandrois J-P et al. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environ Microbiol 2019; 21:2809–2835 [View Article][PubMed]
    [Google Scholar]
  16. Cigna J, Dewaegeneire P, Beury A, Gobert V, Faure D. A gapA PCR-sequencing assay for identifying the Dickeya and Pectobacterium potato pathogens. Plant Dis 2017; 101:1278–1282 [View Article][PubMed]
    [Google Scholar]
  17. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 1985; 82:6955–6959 [View Article][PubMed]
    [Google Scholar]
  18. Ngwira N, Samson R. Erwinia chrysanthemi: description of two new biovars (bv 8 and bv 9) isolated from kalanchoe and maize host plants. Agronomie 1990; 10:341–345
    [Google Scholar]
  19. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; Chapter 2:Unit 2.4 [View Article][PubMed]
    [Google Scholar]
  20. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol 2018; 19:153 [View Article][PubMed]
    [Google Scholar]
  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  25. Portier P, Pédron J, Taghouti G, Fischer-Le Saux M, Caullireau E et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int J Syst Evol Microbiol 2019; 69:3207–3216 [View Article][PubMed]
    [Google Scholar]
  26. Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nat Commun 2018; 9:2542 [View Article][PubMed]
    [Google Scholar]
  27. Pearson WR, Wood T, Zhang Z, Miller W. Comparison of DNA sequences with protein sequences. Genomics 1997; 46:24–36 [View Article][PubMed]
    [Google Scholar]
  28. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  29. Katoh K, Standley DM. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 2016; 32:1933–1942 [View Article][PubMed]
    [Google Scholar]
  30. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article][PubMed]
    [Google Scholar]
  31. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article][PubMed]
    [Google Scholar]
  32. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  33. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article][PubMed]
    [Google Scholar]
  34. Condemine G, Robert-Baudouy J. Analysis of an Erwinia chrysanthemi gene cluster involved in pectin degradation. Mol Microbiol 1991; 5:2191–2202 [View Article][PubMed]
    [Google Scholar]
  35. Panda P, Vanga BR, Lu A, Fiers M, Fineran PC et al. Pectobacterium atrosepticum and Pectobacterium carotovorum harbor distinct, independently acquired integrative and conjugative elements encoding coronafacic acid that enhance virulence on potato stems. Front Microbiol 2016; 7:397 [View Article][PubMed]
    [Google Scholar]
  36. Slawiak M, Lojkowska E. Genes responsible for coronatine synthesis in Pseudomonas syringae present in the genome of soft rot bacteria. Eur J Plant Pathol 2009; 124:353–361
    [Google Scholar]
  37. Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE. Bacterial pectate lyases, structural and functional diversity. Environ Microbiol Rep 2014; 6:427–440 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004306
Loading
/content/journal/ijsem/10.1099/ijsem.0.004306
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error