1887

Abstract

A Gram-negative bacterium, YIM 003, which was isolated from a contaminated plate in the laboratory, was subjected to a polyphasic taxonomic study. The organism had short-rod-shaped, motile cells, formed yellow-pigmented colonies on ISP2 medium and its optimum growth pH was 7·0–7·5. The major respiratory lipoquinone was ubiquinone Q-10. The phosphate-containing lipids detected in strain YIM 003 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and one unidentified phospholipid. The major fatty acids were C 7 (59·8 %), C (9·9 %), ai-C (5·3 %), i-C (4·4 %) and C 2-OH (15·8 %). The G+C content of the genomic DNA was 67·5 mol%. Strain YIM 003 exhibited levels of 16S rRNA gene sequence similarity of 98·2 % to FA2 and 98·0 % to DSM 7418 but showed less than 97·0 % similarity with respect to other species with validly published names. The DNA–DNA relatedness values of the isolate with FA2 and DSM 7418 were 59 and 26 %, respectively. The phenotypic characteristics and genotypic data indicate that strain YIM 003 should be distinguished from FA2 and DSM 7418. Therefore, on the basis of the polyphasic taxonomic data presented, a novel species of the genus , sp. nov., is proposed, with the type strain YIM 003 (=CCTCC AB 204064=KCTC 12346).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63697-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2361.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63697-0&mimeType=html&fmt=ahah

References

  1. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  2. Busse H.-J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennassar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov.,air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [CrossRef]
    [Google Scholar]
  3. Cui X. L., Mao P. H., Zeng M., Li W. J., Zhang L. P., Xu L. H., Jiang C. L. 2001; Streptimonospora salina gen. nov., sp. nov. a new member of the family Nocardiopsaceae . Int J Syst Evol Microbiol 51:357–363
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Conference limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789 [CrossRef]
    [Google Scholar]
  6. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  7. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  10. Lee J. S., Shin Y. K., Yoon J. H., Takeuchi M., Pyun Y. R., Park Y. H. 2001; Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51:1491–1498
    [Google Scholar]
  11. Li W. J., Zhang Y. Q., Park D. J., Li C. T., Xu L. H., Kim C. J., Jiang C. L. 2004; Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int J Syst Evol Microbiol 54:1811–1814 [CrossRef]
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  14. Moaledj K. 1986; Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 5:303–310 [CrossRef]
    [Google Scholar]
  15. Rivas R., Abril A., Trujillo M. E., Velazquez E. 2004; Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. Int J Syst Evol Microbiol 54:2147–2150 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  18. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  20. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycerol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16:227–238 [CrossRef]
    [Google Scholar]
  21. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of “ Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248 [CrossRef]
    [Google Scholar]
  24. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  25. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al . 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63697-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63697-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error