1887

Abstract

Enrichments for anaerobic organotrophic hyperthermophiles were performed with hydrothermal chimney samples collected at the Guaymas Basin (27° 01′ N, 111° 24′ W). Positive enrichments were submitted to -irradiation at a dose of 30 kGy. One of the resistant strains, designated strain EJ3, formed regular motile cocci. The new strain grew between 55 and 95 °C, with an optimum growth temperature of 88 °C. The optimal pH for growth was 6·0, and the optimum NaCl concentration for growth was around 20 g l. Strain EJ3 was an obligately anaerobic heterotroph that utilized yeast extract, tryptone and peptone. Elemental sulfur or cystine was required for growth and reduced to hydrogen sulfide. The G+C content of the genomic DNA was 51·3 mol%. As determined by 16S rRNA gene sequence analysis, the organism was most closely related to , , , and . However, no significant homology was observed between them by DNA–DNA hybridization. The novel organism also possessed phenotypic traits that differ from those of its closest phylogenetic relatives. Therefore, it is proposed that this isolate, which constitutes the most radioresistant hyperthermophilic archaeon known to date, should be described as the type strain of a novel species, sp. nov. The type strain is EJ3 (=DSM 15229=JCM 11827).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02503-0
2003-05-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530847.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02503-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane-sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  2. Battista J. R. 1997; Against all odds: the survival strategies of Deinococcus radiodurans . Annu Rev Microbiol 18:203–224
    [Google Scholar]
  3. Canganella F., Jones W. J., Gambacorta A., Antranikian G. 1998; Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48:1181–1185 [CrossRef]
    [Google Scholar]
  4. Cherry R. D., Desbruyères M., Heyraud M., Nolan C. 1992; High levels of natural radioactivity in hydrothermal vent polychaetes. C R Acad Sci Paris III:21–26
    [Google Scholar]
  5. Corre E., Reysenbach A. L., Prieur D. 2001; Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335
    [Google Scholar]
  6. Erauso G., Prieur D. 1995; Plate cultivation technique for strictly anaerobic, thermophilic, sulfur-metabolizing archaea . In Archaea: a Laboratory Manual vol 3 pp 25–29Edited by Fleischmann E. M., Place A. R., Robb F. T., Schreider H. J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Fiala G., Stetter K. 1986; Pyrococcus furiosus sp. nov. represents a new genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:338–349
    [Google Scholar]
  8. Gérard E., Jolivet E., Prieur D., Forterre P. 2001; DNA protection is not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus furiosus . Mol Genet Genom 266:72–78 [CrossRef]
    [Google Scholar]
  9. Godfroy A., Lesongeur F., Raguénès G., Quérellou J., Antoine E., Meunier J.-R., Guezennec J., Barbier G. 1997; Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626 [CrossRef]
    [Google Scholar]
  10. Huber R. J., Langworthy T. A., Konig H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333 [CrossRef]
    [Google Scholar]
  11. Jeanthon C., L'Haridon S., Reysenbach A. L., Vernet M., Messner P., Sleytr U. B., Prieur D. 1998; Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919 [CrossRef]
    [Google Scholar]
  12. Kobayashi T., Kwak Y. S., Akiba T., Kudo T., Horikoshi K. 1994; Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236 [CrossRef]
    [Google Scholar]
  13. Kopylov V. M., Bonch-Osmolovskaya E. A., Svetlichnyi V. A., Miroshnicheko M. L., Skobkin V. S. 1993; Gamma-irradiation resistance and UV-sensitivity of extremely thermophilic archaebacteria and eubacteria. Mikrobiologiya 62:90–95
    [Google Scholar]
  14. L'Haridon S., Cilia V., Messner P., Raguénès G., Gambacorta A., Sleytr U. B., Prieur D., Jeanthon C. 1998; Desulfurobacterium thermolithotrophum gen. nov. sp. nov. a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711 [CrossRef]
    [Google Scholar]
  15. Marteinsson V. T., Birrien J.-L., Reysenbach A.-L., Vernet M., Marie D., Gambacorta A., Messner P., Sleytr U., Prieur D. 1999; Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359 [CrossRef]
    [Google Scholar]
  16. Miroshnichenko M. L., Gongadze G. M., Rainey F. A., Kostyukova A. S., Lysenko A. M., Chernyh N. A., Bonch-Osmolovskaya E. A. 1998; Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48:23–29 [CrossRef]
    [Google Scholar]
  17. Miroshnichenko M. L., Hippe H., Stackebrandt E., Kostrinika N. A., Chernyh N. A., Jeanthon C., Nazina T. N., Belyaev S. S., Bonch-Osmolovskaya E. A. 2001; Isolation and characterization of Thermococcus sibiricus sp. nov., from western siberia high-temperature oil reservoir. Extremophiles 5:85–91 [CrossRef]
    [Google Scholar]
  18. Takai K., Sugai A., Itoh T., Horikoshi K. 2000; Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500 [CrossRef]
    [Google Scholar]
  19. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. pp 3352–3378Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Shleifer K. H. New York: Springer;
    [Google Scholar]
  20. Zillig W., Reysenbach A.-L. 2001; Class IV. Thermococci class nov . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp 342–346Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  21. Zillig W., Holz I., Janekovic D., Schäfer W., Reiter W. D. 1983; The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02503-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02503-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error