1887

Abstract

Seven psychrotolerant, Gram-negative bacterial strains, five dust- and airborne isolates (MA101b, MA306a, MA405/90, MA-olki and NW12) and two from the Antarctic (Ant 20 and M3C203B-B), were subjected to a polyphasic characterization to determine their taxonomic position. High 16S rDNA sequences similarities (99·3–100·0 %) demonstrated that they were closely related to each other. Phylogenetic evaluation of their 16S rDNA sequences revealed that they are members of the genus , encompassing a separate branch within this genus. They shared 94·4–96·6 % 16S rDNA sequence similarity with species of this genus. All -specific signature nucleotides were also detected. The presence of the major ubiquinone Q-10, -homospermidine as the predominant polyamine, -specific sphingoglycolipid in the polar lipid patterns and a fatty acid profile containing C 2-OH and lacking 3-OH fatty acids were in agreement with identification of these strains as members of the genus . Results from DNA–DNA hybridizations and comparison of protein patterns indicated that the seven strains are members of three distinct species. One species is represented by strains MA101b, MA306a and MA405/90, the second by strains NW12, Ant 20 and M3C203B-B and the third by one strain, MA-olki. Their distinction at the species level was also supported by results of biochemical characterization and partly supported by riboprints and genomic fingerprints. On the basis of these results, three novel species of the genus are proposed: sp. nov., consisting of strains MA101b (=DSM 14748=LMG 21377), MA306a and MA405/90 (=DSM 14749=LMG 21378), sp. nov. MA-olki (=DSM 14747=LMG 21379) and sp. nov., represented by strains NW12 (=DSM 14746=LMG 21376), Ant 20 (=ICMP 13599) and M3C203B-B (=SMCC M3C203B-B).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02461-0
2003-09-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531253.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02461-0&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Strömpl C., Meyer H.8 other authors 1999; Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49:1053–1073 [CrossRef]
    [Google Scholar]
  2. Aislabie J., Foght J., Saul D. 2000; Aromatic hydrocarbon-degrading bacteria from oil near Scott Base, Antarctica. Polar Biol 23:183–188 [CrossRef]
    [Google Scholar]
  3. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  4. Andersson M. A., Weiss N., Rainey F. A., Salkinoja-Salonen M. S. 1999; Dust-borne bacteria in animal sheds, schools and children's day care centers. J Appl Microbiol 86:622–634 [CrossRef]
    [Google Scholar]
  5. Bally R., Givaudan A., Bernillon J., Heulin T., Balandreau J., Bardin R. 1990; Numerical taxonomic study of three N2-fixing yellow-pigmented bacteria related to Pseudomonas paucimobilis . Can J Microbiol 36:850–855 [CrossRef]
    [Google Scholar]
  6. Brimblecombe P., Blades N., Camuffo D.8 other authors 1999; The indoor environment of a modern museum building, the Sainsbury Centre for Visual Arts, Norwich, UK. Indoor Air 9:146–164 [CrossRef]
    [Google Scholar]
  7. Buczolits S., Denner E. B. M., Vybiral D., Wieser M., Kämpfer P., Busse H.-J. 2002; Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52:445–456
    [Google Scholar]
  8. Busse J., Auling G. 1988; Polyamine patterns as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  9. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  10. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  11. Busse H.-J., Kainz A., Tsitko I. V., Salkinoja-Salonen M. 2000; Riboprints as a tool for rapid preliminary identification of sphingomonads. Syst Appl Microbiol 23:115–123 [CrossRef]
    [Google Scholar]
  12. Busse H.-J., Kämpfer P., Moore B. E. R.7 other authors 2002; Thermomonas haemolytica gen. nov., sp. nov. a γ -proteobacterium from kaolin slurry. Int J Syst Evol Microbiol 52:473–483
    [Google Scholar]
  13. Christner B. C., Mosley-Thompson E., Thompson L. G., Zagorodnov V., Sandman K., Reeve J. N. 2000; Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485 [CrossRef]
    [Google Scholar]
  14. Christner B. C., Mosley-Thompson E., Thompson L. G., Reeve J. N. 2001; Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577 [CrossRef]
    [Google Scholar]
  15. Denner E. B. M., Paukner S., Kämpfer P., Moore E. R. B., Abraham W.-R., Busse H.-J., Wanner G., Lubitz W. 2001; Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841 [CrossRef]
    [Google Scholar]
  16. Denner E. B. M., Vybiral D., Koblížek M., Kämpfer P., Busse H.-J., Velimirov B. 2002; Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a , isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52:1655–1661 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. 1993 phylip (phylogenetic inference package), version 3.5c Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  18. Gutell R. R., Weiser B., Woese C. R., Noller H. F. 1985; Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acids Res Mol Biol 32:155–216
    [Google Scholar]
  19. Jenkins C. L., Andrewes A. G., McQuade T. J., Starr M. P. 1979; The pigment of Pseudomonas paucimobilis is a carotenoid (nostoxanthin) rather than a brominated aryl-polyene (xanthomonadin). Curr Microbiol 3:1–4 [CrossRef]
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  21. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  22. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of ‘ Pseudomonas azotocolligans ’ Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  23. Kaneko T., Katoh K., Fujimoto M., Kumagi M., Tamaoka J., Katayama-Fujimura Y. 1986; Determination of the nucleotide composition of a deoxyribonucleic acid by high-performance liquid chromatography of its enzymatic hydrolysates: a review. J Microbiol Methods 4:229–240 [CrossRef]
    [Google Scholar]
  24. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  25. Stetzenbach L. D. 1992; Airborne microorganisms. In Encyclopedia of Microbiology vol. 1 pp 53–65Edited by Lederberg J. San Diego: Academic Press;
    [Google Scholar]
  26. Stolz A., Schmidt-Maag C., Denner E. B. M., Busse H.-J., Egli T., Kämpfer P. 2000; Description of Sphingomonas xenophaga sp. nov. for strain BN6T and N,N, which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50:35–41 [CrossRef]
    [Google Scholar]
  27. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  28. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  29. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of ‘ Micrococcus sp.’ strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248 [CrossRef]
    [Google Scholar]
  30. Wieser M., Busse H.-J. 2000; Rapid identification of Staphylococcus epidermidis . Int J Syst Evol Microbiol 50:1087–1093 [CrossRef]
    [Google Scholar]
  31. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov. and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  32. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al . 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
  33. Ziemke F., Höfle M. G., Lalucat J., Roselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02461-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02461-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error