1887

Abstract

Three aniline-degrading bacteria, strains DN316, DN316-1 and DN365, were isolated from activated sludge. According to 16S rRNA gene sequence-based phylogenetic analysis, the isolates belonged to the genus , with ( = ) LMG 140 as the closest relative, with 96.5 % sequence similarity. Phylogenetic analysis of the representative strain DN316 using sequences of the , and genes and the 16S–23S intergenic spacer region confirmed the phylogenetic arrangement obtained from analysis of the 16S rRNA gene. DNA–DNA relatedness between DN316 and LMG 140 was 43.7 %, clearly indicating that the representative strain DN316 represents a novel species. Phenotypic and biochemical characterization of the isolates and insertion sequence-PCR fingerprinting patterns showed several distinctive features that differentiated them from closely related species. The major components of the cellular fatty acids were Cω7 (57.10 %), C (11.31 %) and C cyclo ω8 (10.13 %). Based on our taxonomic analysis, the three isolates from activated sludge represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DN316 ( = CICC 10378  = LMG 23925).

Funding
This study was supported by the:
  • Science and Technology Planning Project of Guangdong Province (Award 2008B030302043 and 2007A032400003)
  • Chinese National Programs for High Technology Research and Development (Award 2006AA06Z322)
  • Team Project of Natural Science Foundation of Guangdong, China (Award 9351007002000001)
  • National Major Project on control and rectification of water body pollution (Award 2008ZX07011-007)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022228-0
2011-04-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/816.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022228-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Bathe S. 2004; Conjugal transfer of plasmid pNB2 to activated sludge bacteria leads to 3-chloroaniline degradation in enrichment cultures. Lett Appl Microbiol 38:527–531 [View Article][PubMed]
    [Google Scholar]
  3. Berge O., Lodhi A., Brandelet G., Santaella C., Roncato M. A., Christen R., Heulin T., Achouak W. 2009; Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372 [View Article][PubMed]
    [Google Scholar]
  4. Boon N., Goris J., De Vos P., Verstraete W., Top E. M. 2001; Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae . Appl Environ Microbiol 67:1107–1115 [View Article][PubMed]
    [Google Scholar]
  5. Chen W. X., Tan Z. Y., Gao J. L., Li Y., Wang E. T. 1997; Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873 [View Article][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  7. Eardly B. D., Wang F.-S., Van Berkum P. 1996; Corresponding 16S rRNA segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186:69–74 [View Article]
    [Google Scholar]
  8. Eardly B. D., Nour S. M., van Berkum P., Selander R. K. 2005; Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae . Appl Environ Microbiol 71:1328–1335 [View Article][PubMed]
    [Google Scholar]
  9. Frank B. 1889; Uber die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7:332–346 (in German)
    [Google Scholar]
  10. Fujii T., Takeo M., Maeda Y. 1997; Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143:93–99 [View Article][PubMed]
    [Google Scholar]
  11. Fukumori F., Saint C. P. 1997; Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1). J Bacteriol 179:399–408[PubMed]
    [Google Scholar]
  12. García-Fraile P., Rivas R., Willems A., Peix A., Martens M., Martínez-Molina E., Mateos P. F., Velázquez E. 2007; Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba . Int J Syst Evol Microbiol 57:844–848 [View Article][PubMed]
    [Google Scholar]
  13. Gheewala S. H., Annachhatre A. P. 1997; Biodegradation of aniline. Water Sci Technol 36:1053–63 [View Article]
    [Google Scholar]
  14. Gu C. T., Wang E. T., Tian C. F., Han T. X., Chen W. F., Sui X. H., Chen W. X. 2008; Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368 [View Article][PubMed]
    [Google Scholar]
  15. Han T. X., Wang E. T., Wu L. J., Chen W. F., Gu J. G., Gu C. T., Tian C. F., Chen W. X. 2008; Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699 [View Article][PubMed]
    [Google Scholar]
  16. Heyrman J., Balcaen A., De Vos P., Schumann P., Swings J. 2002; Brachybacterium fresconis sp. nov. and Brachybacterium sacelli sp. nov., isolated from deteriorated parts of a medieval wall painting of the chapel of Castle Herberstein (Austria). Int J Syst Evol Microbiol 52:1641–1646 [View Article][PubMed]
    [Google Scholar]
  17. Hou B. C., Wang E. T., Li Y. Jr, Jia R. Z., Chen W. F., Gao Y., Dong R. J., Chen W. X. 2009; Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Širj.) Vassilcz.. Int J Syst Evol Microbiol 59:3051–3057 [View Article][PubMed]
    [Google Scholar]
  18. Hunter W. J., Kuykendall L. D., Manter D. K. 2007; Rhizobium selenireducens sp. nov.: a selenite-reducing α-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460 [View Article][PubMed]
    [Google Scholar]
  19. Hurek T., Egener T., Reinhold-Hurek B. 1997; Divergence in nitrogenases of Azoarcus spp., Proteobacteria of the β subclass. J Bacteriol 179:4172–4178[PubMed]
    [Google Scholar]
  20. Jarvis B. D. W., Sivakumaran S., Tighe S. W., Gillis M. 1996; Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant Soil 184:143–158 [CrossRef]
    [Google Scholar]
  21. Kearney P. C., Kaufman D. D. 1969 Degradation of Herbicides New York: Marcel Dekker;
    [Google Scholar]
  22. Liang Q., Chen M., Xu Y., Zhang W., Ping S., Lu W., Song X., Wang W., Geng L. et al. 2005; Functional identification of gene cluster for the aniline metabolic pathway mediated by transposable element. Chin Sci Bull 50:1612–1616 [View Article]
    [Google Scholar]
  23. Lin D. X., Chen W. F., Wang F. Q., Hu D., Wang E. T., Sui X. H., Chen W. X. 2009; Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 59:1919–1923 [View Article][PubMed]
    [Google Scholar]
  24. Liu Z., Yang H., Huang Z., Zhou P., Liu S. J. 2002; Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl Microbiol Biotechnol 58:679–682 [View Article][PubMed]
    [Google Scholar]
  25. Lu Y. L., Chen W. F., Han L. L., Wang E. T., Chen W. X. 2009; Rhizobium alkalisoli sp. nov., isolated from Caragana intermedia growing in saline-alkaline soils in the north of China. Int J Syst Evol Microbiol 59:3006–3011 [View Article][PubMed]
    [Google Scholar]
  26. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  27. Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A. 2007; Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503 [View Article][PubMed]
    [Google Scholar]
  28. Meyers N. L. 1992; Molecular cloning and partial characterization of the pathway for aniline degradation in Pseudomonas sp. strain ClT1. Curr Microbiol 24:303–310 [View Article]
    [Google Scholar]
  29. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Nour S. M., Fernandez M. P., Normand P., Cleyet-Marel J.-C. 1994; Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522 [View Article][PubMed]
    [Google Scholar]
  31. Peng G. X., Tan Z. Y., Wang E. T., Reinhold-Hurek B., Chen W. F., Chen W. X. 2002; Identification of isolates from soybean nodules in Xinjiang Region as Sinorhizobium xinjiangense and genetic differentiation of S. xinjiangense from Sinorhizobium fredii . Int J Syst Evol Microbiol 52:457–462[PubMed]
    [Google Scholar]
  32. Peng G. X., Wang H. R., Zhang G. X., Hou W., Liu Y., Wang E. T., Tan Z. 2006; Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271 [View Article][PubMed]
    [Google Scholar]
  33. Peng G. X., Yuan Q. H., Li H. X., Zhang W., Tan Z. Y. 2008; Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta . Int J Syst Evol Microbiol 58:2158–2163 [View Article][PubMed]
    [Google Scholar]
  34. Quan Z.-X., Bae H.-S., Baek J.-H., Chen W.-F., Im W.-T., Lee S.-T. 2005; Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549 [View Article][PubMed]
    [Google Scholar]
  35. Ramírez-Bahena M. H., García-Fraile P., Peix A., Valverde A., Rivas R., Igual J. M., Mateos P. F., Martínez-Molina E., Velázquez E. 2008; Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 ( = NCIMB 11478) as Rhizobium pisi sp. nov.. Int J Syst Evol Microbiol 58:2484–2490 [View Article][PubMed]
    [Google Scholar]
  36. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  37. Song Y.-J., Yang R.-F., Guo Z.-B., Zhang M.-L., Wang X.-H., Zhou F. 2000; Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming bacilli. J Microbiol Methods 39:225–241 [View Article][PubMed]
    [Google Scholar]
  38. Sullivan J. T., Eardly B. D., van Berkum P., Ronson C. W. 1996; Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus . Appl Environ Microbiol 62:2818–2825[PubMed]
    [Google Scholar]
  39. Takeo M., Fujii T., Takenaka K., Maeda Y. 1998; Cloning and sequencing of a gene cluster for the meta-cleavage pathway of aniline degradation in Acinetobacter sp. strain YAA. J Ferment Bioeng 85:514–517 [View Article]
    [Google Scholar]
  40. Tan Z. Y., Kan F. L., Peng G. X., Wang E. T., Reinhold-Hurek B., Chen W. X. 2001; Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914[PubMed] [CrossRef]
    [Google Scholar]
  41. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  42. Tighe S. W., de Lajudie P., Dipietro K., Lindstrom K., Nick G., Jarvis B. D. W. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [CrossRef]
    [Google Scholar]
  43. van Berkum P., Terefework Z., Paulin L., Suomalainen S., Lindström K., Eardly B. D. 2003; Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998 [View Article][PubMed]
    [Google Scholar]
  44. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570[PubMed]
    [Google Scholar]
  45. Vincent J. M. 1970; The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of the Root-Nodule Bacteria pp. 1–13 Edited by Vincent J. M. Oxford: Blackwell Scientific;
    [Google Scholar]
  46. Vinuesa P., Silva C., Lorite M. J., Izaguirre-Mayoral M. L., Bedmar E. J., Martínez-Romero E. 2005; Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716 [View Article][PubMed]
    [Google Scholar]
  47. Xu M. Y., Guo J., Cen Y. H., Zhong X. Y., Cao W., Sun G. P. 2005; Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int J Syst Evol Microbiol 55:363–368 [View Article][PubMed]
    [Google Scholar]
  48. Young J. M., Kuykendall L. D., Martínez-Romero E., Kerr A., Sawada H. 2001; A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis . Int J Syst Evol Microbiol 51:89–103[PubMed] [CrossRef]
    [Google Scholar]
  49. Zhang G., Zeng G., Cai X., Deng S., Luo H., Sun G. 2007; Brachybacterium zhongshanense sp. nov., a cellulose-decomposing bacterium from sediment along the Qijiang River, Zhongshan City, China. Int J Syst Evol Microbiol 57:2519–2524 [View Article][PubMed]
    [Google Scholar]
  50. Zhang T., Zhang J. L., Liu S. J., Liu Z. P. 2008; A novel and complete gene cluster involved in the degradation of aniline by Delftia sp. AN3. J Environ Sci (China) 20:717–724[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022228-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022228-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error