1887

Abstract

Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting , which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50–60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.

Funding
This study was supported by the:
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (Award PQ-2 fellowship)
    • Principle Award Recipient: PauloAntas
  • Fundação Oswaldo Cruz
    • Principle Award Recipient: PauloAntas
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
    • Principle Award Recipient: PauloSousa
  • Funcap
    • Principle Award Recipient: ThalesCampelo
  • INCT-TB
    • Principle Award Recipient: PauloAntas
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000245
2021-08-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/acmi/3/8/acmi000245.html?itemId=/content/journal/acmi/10.1099/acmi.0.000245&mimeType=html&fmt=ahah

References

  1. Morris K. WHO recommends against inaccurate tuberculosis tests. Lancet 2011; 377:113–114 [View Article] [PubMed]
    [Google Scholar]
  2. Andersen P, Munk ME, Pollock JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. Lancet 2000; 356:1099–1104 [View Article] [PubMed]
    [Google Scholar]
  3. Dockrell HM, Weir RE. Whole blood cytokine assays-a new generation of diagnostic tests for tuberculosis?. Int J Tuberc Lung Dis 1998; 2:441–442 [PubMed]
    [Google Scholar]
  4. WHO Global tuberculosis report 2019. Geneva 2019
    [Google Scholar]
  5. Keer JT, Birch L. Molecular methods for the assessment of bacterial viability. J Microbiol Methods 2003; 53:175–183 [View Article] [PubMed]
    [Google Scholar]
  6. Kwak M, Lee WK, Lim YJ, Lee SH, Ryoo S. Systematic review and meta-analysis of the nitrate reductase assay for drug susceptibility testing of Mycobacterium tuberculosis and the detection limits in liquid medium. J Microbiol Methods 2017; 141:1–9 [View Article] [PubMed]
    [Google Scholar]
  7. Warner DF, Mizrahi V. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 2006; 19:558–570 [View Article] [PubMed]
    [Google Scholar]
  8. Argyrou A, Vetting MW, Blanchard JS. New insight into the mechanism of action of and resistance to isoniazid: interaction of Mycobacterium tuberculosis enoyl-ACP reductase with INH-NADP. J Am Chem Soc 2007; 129:9582–9583 [View Article] [PubMed]
    [Google Scholar]
  9. Jeevan A, Sharma AK, McMurray DN. Ultraviolet radiation reduces resistance to Mycobacterium tuberculosis infection in BCG-vaccinated guinea pigs. Tuberculosis (Edinb) 2009; 89:431–438 [View Article] [PubMed]
    [Google Scholar]
  10. Donaghy J, Keyser M, Johnston J, Cilliers FP, Gouws PA et al. Inactivation of Mycobacterium avium ssp. paratuberculosis in milk by UV treatment. Lett Appl Microbiol 2009; 49:217–221 [View Article] [PubMed]
    [Google Scholar]
  11. Gholoobi A, Masoudi-Kazemabad A, Meshkat M, Meshkat Z. Comparison of culture and PCR methods for diagnosis of Mycobacterium tuberculosis in different clinical specimens. Jundishapur J Microbiol 2014; 7:e8939 [View Article] [PubMed]
    [Google Scholar]
  12. Rageade F, Picot N, Blanc-Michaud A, Chatellier S, Mirande C et al. Performance of solid and liquid culture media for the detection of Mycobacterium tuberculosis in clinical materials: meta-analysis of recent studies. Eur J Clin Microbiol Infect Dis 2014; 33:867–870 [View Article]
    [Google Scholar]
  13. Hobby GL, Holman AP, Iseman MD, Jones JM. Enumeration of tubercle bacilli in sputum of patients with pulmonary tuberculosis. Antimicrob Agents Chemother 1973; 4:94–104 [View Article] [PubMed]
    [Google Scholar]
  14. American Thoracic Society Diagnostic standards and classification of Tuberculosis. Am Rev Respir Dis 1990; 142:725–735 [View Article] [PubMed]
    [Google Scholar]
  15. Naveen G, Peerapur BV. Comparison of the Lowenstein-jensen medium, the middlebrook 7H10 medium and MB/BacT for the isolation of Mycobacterium tuberculosis (MTB) from clinical specimens. J Clin Diagn Res 2012; 6:1704–1709 [View Article] [PubMed]
    [Google Scholar]
  16. Abdelhay A, Magnin JP, Gondrexon N, Baup S, Willison J. Adaptation of a Mycobacterium strain to phenanthrene degradation in a biphasic culture system: influence on interfacial area and droplet size. Biotechnol Lett 2009; 31:57–63 [View Article] [PubMed]
    [Google Scholar]
  17. Bammann RH, Zamarioli LA, Pinto VS, Vázquez CM, Litvoc MN et al. High prevalence of drug-resistant tuberculosis and other mycobacteria among HIV-infected patients in Brazil: a systematic review. Mem Inst Oswaldo Cruz 2010; 105:838–841 [View Article] [PubMed]
    [Google Scholar]
  18. Rodrigues L, Aínsa JA, Amaral L, Viveiros M. Inhibition of drug efflux in mycobacteria with phenothiazines and other putative efflux inhibitors. Recent Pat Antiinfect Drug Discov 2011; 6:118–127 [View Article] [PubMed]
    [Google Scholar]
  19. Larsen MH, Vilchèze C, Kremer L, Besra GS, Parsons L et al. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis . Mol Microbiol 2002; 46:453–466 [View Article] [PubMed]
    [Google Scholar]
  20. Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int J Tuberc Lung Dis 2015; 19:1276–1289 [View Article] [PubMed]
    [Google Scholar]
  21. Cheng VC, Yew WW, Yuen KY. Molecular diagnostics in tuberculosis. Eur J Clin Microbiol Infect Dis 2005; 24:711–720 [View Article]
    [Google Scholar]
  22. Sester M, Giehl C, McNerney R, Kampmann B, Walzl G et al. Challenges and perspectives for improved management of HIV/Mycobacterium tuberculosis co-infection. Eur Respir J 2010; 36:1242–1247 [View Article] [PubMed]
    [Google Scholar]
  23. ATS Diagnostic standards and classification of tuberculosis in adults and children. Am J Respir Crit Care Med 2000; 161:1376–1395
    [Google Scholar]
  24. WHO Systematic screening for active tuberculosis: principles and recommendations. WHO/HTM/TB/2013.04. Geneva 2013; 1:
    [Google Scholar]
  25. Abrahams KA, Besra GS. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology 2018; 145:116–133 [View Article] [PubMed]
    [Google Scholar]
  26. Ghazaei C. Mycobacterium tuberculosis and lipids: Insights into molecular mechanisms from persistence to virulence. J Res Med Sci 2018; 23:63 [View Article] [PubMed]
    [Google Scholar]
  27. Queiroz A, Riley LW. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response. Rev Soc Bras Med Trop 2017; 50:9–18 [View Article] [PubMed]
    [Google Scholar]
  28. Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 2011; 7:e1002093 [View Article] [PubMed]
    [Google Scholar]
  29. Cambanis A, Ramsay A, Wirkom V, Tata E, Cuevas LE. Investing time in microscopy: an opportunity to optimise smear-based case detection of tuberculosis. Int J Tuberc Lung Dis 2007; 11:40–45 [PubMed]
    [Google Scholar]
  30. Poeta P, Silva V, Guedes A, Eduardo Pereira J, Cláudia Coelho A et al. Tuberculosis in the 21th century: Current status of diagnostic methods. Exp Lung Res 2018; 44:352–360 [View Article] [PubMed]
    [Google Scholar]
  31. Garg SK, Tiwari RP, Tiwari D, Singh R, Malhotra D et al. Diagnosis of tuberculosis: available technologies, limitations, and possibilities. J Clin Lab Anal 2003; 17:155–163 [View Article] [PubMed]
    [Google Scholar]
  32. Smithwick RW, Stratigos CB, David HL. Use of cetylpyridinium chloride and sodium chloride for the decontamination of sputum specimens that are transported to the laboratory for the isolation of Mycobacterium tuberculosis . J Clin Microbiol 1975; 1:411–413 [View Article] [PubMed]
    [Google Scholar]
  33. Bobadilla-del-Valle M, Ponce-de-León A, Kato-Maeda M, Hernández-Cruz A, Calva-Mercado JJ et al. Comparison of sodium carbonate, cetyl-pyridinium chloride, and sodium borate for preservation of sputa for culture of Mycobacterium tuberculosis . J Clin Microbiol 2003; 41:4487–4488 [View Article] [PubMed]
    [Google Scholar]
  34. Suresh N, Singh UB, Arora J, Pande JN, Seth P et al. Rapid detection of rifampicin-resistant Mycobacterium tuberculosis by in-house, reverse line blot assay. Diagn Microbiol Infect Dis 2006; 56:133–140 [View Article] [PubMed]
    [Google Scholar]
  35. Hepple P, Ford N, McNerney R. Microscopy compared to culture for the diagnosis of tuberculosis in induced sputum samples: a systematic review. Int J Tuberc Lung Dis 2012; 16:579–588 [View Article] [PubMed]
    [Google Scholar]
  36. Sohn H, Minion J, Albert H, Dheda K, Pai M. TB diagnostic tests: how do we figure out their costs?. Expert Rev Anti Infect Ther 2009; 7:723–733 [View Article] [PubMed]
    [Google Scholar]
  37. Levinson L, White RL. The detection of tubercle bacilli by fluorescence microscopy. N Engl J Med 1947; 237:186 [View Article] [PubMed]
    [Google Scholar]
  38. Kivihya-Ndugga LE, van Cleeff MR, Githui WA, Nganga LW, Kibuga DK et al. A comprehensive comparison of Ziehl-Neelsen and fluorescence microscopy for the diagnosis of tuberculosis in a resource-poor urban setting. Int J Tuberc Lung Dis 2003; 7:1163–1171 [PubMed]
    [Google Scholar]
  39. Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infect Dis 2006; 6:570–581 [View Article]
    [Google Scholar]
  40. Harries AD, Maher D, Nunn P. An approach to the problems of diagnosing and treating adult smear-negative pulmonary tuberculosis in high-HIV-prevalence settings in sub-Saharan Africa. Bull World Health Organ 1998; 76:651–662 [PubMed]
    [Google Scholar]
  41. Foulds J, O’Brien R. New tools for the diagnosis of tuberculosis: the perspective of developing countries. Int J Tuberc Lung Dis 1998; 2:778–783 [PubMed]
    [Google Scholar]
  42. Shingadia D, Novelli V. Diagnosis and treatment of tuberculosis in children. Lancet Infect Dis 2003; 3:624–632 [View Article] [PubMed]
    [Google Scholar]
  43. Siddiqi K, Lambert ML, Walley J. Clinical diagnosis of smear-negative pulmonary tuberculosis in low-income countries: the current evidence. Lancet Infect Dis 2003; 3:288–296 [View Article] [PubMed]
    [Google Scholar]
  44. Steingart KR, Henry M, Laal S, Hopewell PC, Ramsay A et al. Commercial serological antibody detection tests for the diagnosis of pulmonary tuberculosis: a systematic review. PLoS Med 2007; 4:e202 [View Article] [PubMed]
    [Google Scholar]
  45. Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A et al. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 2006; 6:664–674 [View Article] [PubMed]
    [Google Scholar]
  46. Kong Y, Yao H, Ren H, Subbian S, Cirillo SLG et al. Imaging tuberculosis with endogenous β-lactamase reporter enzyme fluorescence in live mice. Proc Natl Acad Sci U S A 2010; 107:12239–12244 [View Article]
    [Google Scholar]
  47. Sule P, Tilvawala R, Mustapha T, Hassounah H, Noormohamed A et al. Rapid tuberculosis diagnosis using reporter enzyme fluorescence. J Clin Microbiol 2019; 57: [View Article] [PubMed]
    [Google Scholar]
  48. Yeager H, Lacy J, Smith LR, LeMaistre CA. Quantitative studies of mycobacterial populations in sputum and saliva. Am Rev Respir Dis 1967; 95:998–1004 [View Article] [PubMed]
    [Google Scholar]
  49. Truffot-Pernot C, Veziris N. Bacteriological tests for tuberculosis. Rev Mal Respir 2011; 28:1034–1047 [View Article] [PubMed]
    [Google Scholar]
  50. Antas PRZ, Santos DO, Pinheiro RO, Barbosa T. Current Diagnosis of Infant Tuberculosis Infection Rio de Janeiro: Bentham Science Publishers; 2012
    [Google Scholar]
  51. Sharp SE, Lemes M, Sierra SG, Poniecka A, Poppiti RJ. Löwenstein-jensen Media. No longer necessary for mycobacterial isolation. Am J Clin Pathol 2000; 113:770–773 [View Article] [PubMed]
    [Google Scholar]
  52. Fair E, Hopewell PC, Pai M. International Standards for Tuberculosis Care: revisiting the cornerstones of tuberculosis care and control. Expert Rev Anti Infect Ther 2007; 5:61–65 [View Article] [PubMed]
    [Google Scholar]
  53. WHO The Use of Liquid Medium for Culture and DST Geneva: World Health Organization; 2007
    [Google Scholar]
  54. Procop GW, Church DL, Hall GS, Janda WM. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology Jones & Bartlett Publishers: 2020
    [Google Scholar]
  55. Parsons LM, Somoskövi A, Urbanczik R, Salfinger M. Laboratory diagnostic aspects of drug resistant tuberculosis. Front Biosci 2004; 9:2086–2105 [View Article] [PubMed]
    [Google Scholar]
  56. Aggarwal P, Singal A, Bhattacharya SN, Mishra K. Comparison of the radiometric BACTEC 460 TB culture system and Löwenstein-Jensen medium for the isolation of mycobacteria in cutaneous tuberculosis and their drug susceptibility pattern. Int J Dermatol 2008; 47:681–687 [View Article] [PubMed]
    [Google Scholar]
  57. Piersimoni C, Scarparo C, Callegaro A, Tosi CP, Nista D et al. Comparison of MB/Bact alert 3D system with radiometric BACTEC system and Löwenstein-Jensen medium for recovery and identification of mycobacteria from clinical specimens: a multicenter study. J Clin Microbiol 2001; 39:651–657 [View Article] [PubMed]
    [Google Scholar]
  58. Venkataraman P, Herbert D, Paramasivan CN. Evaluation of the BACTEC radiometric method in the early diagnosis of tuberculosis. Indian J Med Res 1998; 108:120–127 [PubMed]
    [Google Scholar]
  59. Garrigó M, Aragón LM, Alcaide F, Borrell S, Cardeñosa E et al. Multicenter laboratory evaluation of the MB/BacT Mycobacterium detection system and the BACTEC MGIT 960 system in comparison with the BACTEC 460TB system for susceptibility testing of Mycobacterium tuberculosis . J Clin Microbiol 2007; 45:1766–1770 [View Article] [PubMed]
    [Google Scholar]
  60. Rodrigues CS, Shenai SV, Almeida D, Sadani MA, Goyal N et al. Use of bactec 460 TB system in the diagnosis of tuberculosis. Indian J Med Microbiol 2007; 25:32–36 [View Article] [PubMed]
    [Google Scholar]
  61. Ardito F, Posteraro B, Sanguinetti M, Zanetti S, Fadda G. Evaluation of BACTEC Mycobacteria Growth Indicator Tube (MGIT 960) automated system for drug susceptibility testing of Mycobacterium tuberculosis . J Clin Microbiol 2001; 39:4440–4444 [View Article] [PubMed]
    [Google Scholar]
  62. Huang TS, HZ T, Lee SS, Huang WK, Liu YC. Antimicrobial susceptibility testing of Mycobacterium tuberculosis to first-line drugs: comparisons of the MGIT 960 and BACTEC 460 systems. Ann Clin Lab Sci 2002; 32:142–147 [PubMed]
    [Google Scholar]
  63. Ganeswrie R, Chui CS, Balan S, Puthucheary SD. Comparison of BACTEC MGIT 960 system and BACTEC 460 TB system for growth and detection of Mycobacteria from clinical specimens. Malays J Pathol 2004; 26:99–103 [PubMed]
    [Google Scholar]
  64. Williams-Bouyer N, Yorke R, Lee HI, Woods GL. Comparison of the BACTEC MGIT 960 and ESP culture system II for growth and detection of mycobacteria. J Clin Microbiol 2000; 38:4167–4170 [View Article] [PubMed]
    [Google Scholar]
  65. Nishiyama H, Aono A, Sugamoto T, Mizuno K, Chikamatsu K et al. Optimization of the microscopic observation drug susceptibility assay for four first-line drugs using Mycobacterium tuberculosis reference strains and clinical isolates. J Microbiol Methods 2014; 101:44–48 [View Article] [PubMed]
    [Google Scholar]
  66. Sorlozano A, Soria I, Roman J, Huertas P, Soto MJ et al. Comparative evaluation of three culture methods for the isolation of mycobacteria from clinical samples. J Microbiol Biotechnol 2009; 19:1259–1264 [View Article] [PubMed]
    [Google Scholar]
  67. WHO Roadmap for rolling out Xpert MTB/RIF for rapid diagnosis of TB and MDR-TB. Geneva; 2011. Contract No 2010; 6:
    [Google Scholar]
  68. Hanna BA, Ebrahimzadeh A, Elliott LB, Morgan MA, Novak SM et al. Multicenter evaluation of the BACTEC MGIT 960 system for recovery of mycobacteria. J Clin Microbiol 1999; 37:748–752 [View Article] [PubMed]
    [Google Scholar]
  69. Dowdy DW, Lourenço MC, Cavalcante SC, Saraceni V, King B et al. Impact and cost-effectiveness of culture for diagnosis of tuberculosis in HIV-infected Brazilian adults. PloS One 2008; 3:e4057 [View Article] [PubMed]
    [Google Scholar]
  70. Chin KL, Sarmiento ME, Norazmi MN, Acosta A. DNA markers for tuberculosis diagnosis. Tuberculosis (Edinb) 2018; 113:139–152 [View Article] [PubMed]
    [Google Scholar]
  71. Shinnick TM, Good RC. Diagnostic mycobacteriology laboratory practices. Clin Infect Dis 1995; 21:291–299 [View Article] [PubMed]
    [Google Scholar]
  72. Machado D, Couto I, Viveiros M. Advances in the molecular diagnosis of tuberculosis: From probes to genomes. Infect Genet Evol 2019; 72:93–112 [View Article] [PubMed]
    [Google Scholar]
  73. Peralta G, Barry P, Pascopella L. Use of nucleic acid amplification tests in tuberculosis patients in California, 2010-2013. Open Forum Infect Dis 2016; 3:ofw230 [View Article] [PubMed]
    [Google Scholar]
  74. Sun JR, Lee SY, Perng CL, JJ L. Detecting Mycobacterium tuberculosis in Bactec MGIT 960 cultures by inhouse IS6110-based PCR assay in routine clinical practice. J Formos Med Assoc 2009; 108:119–125 [View Article] [PubMed]
    [Google Scholar]
  75. Das S, Mangold KA, Shah NS, Peterson LR, Thomson RB et al. Performance and utilization of a laboratory-developed nucleic acid amplification test (NAAT) for the diagnosis of pulmonary and extrapulmonary tuberculosis in a low-prevalence area. Am J Clin Pathol 2020; 154:115–123 [View Article] [PubMed]
    [Google Scholar]
  76. Zar HJ. Diagnosis of pulmonary tuberculosis in children-what’s new?. S Afr Med J 2007; 97:983–985 [PubMed]
    [Google Scholar]
  77. Eisenach KD, Sifford MD, Cave MD, Bates JH, Crawford JT. Detection of Mycobacterium tuberculosis in sputum samples using a polymerase chain reaction. Am Rev Respir Dis 1991; 144:1160–1163 [View Article] [PubMed]
    [Google Scholar]
  78. Palomino JC, Vandamme P, Martin A. Classical and new assays for detecting drug resistance in tuberculosis. Biomark Med 2014; 8:1105–1114 [View Article] [PubMed]
    [Google Scholar]
  79. Campelo TA, Lima LNC, Lima KVB, Silva CS, Conceição MLD et al. Molecular characterization of pre-extensive drug resistant Mycobacterium tuberculosis in Northeast Brazil. Rev Inst Med Trop Sao Paulo 2020; 62:e4 [View Article] [PubMed]
    [Google Scholar]
  80. Mathuria JP, Nath G, Samaria JK, Anupurba S. Molecular characterization of INH-resistant Mycobacterium tuberculosis isolates by PCR-RFLP and multiplex-PCR in North India. Infect Genet Evol 2009; 9:1352–1355 [View Article] [PubMed]
    [Google Scholar]
  81. Abe C, Hirano K, Wada M, Kazumi Y, Takahashi M et al. Detection of Mycobacterium tuberculosis in clinical specimens by polymerase chain reaction and Gen-probe amplified Mycobacterium tuberculosis direct test. J Clin Microbiol 1993; 31:3270–3274 [View Article] [PubMed]
    [Google Scholar]
  82. Causse M, Ruiz P, Gutiérrez-Aroca JB, Casal M. Comparison of two molecular methods for rapid diagnosis of extrapulmonary tuberculosis. J Clin Microbiol 2011; 49:3065–3067 [View Article] [PubMed]
    [Google Scholar]
  83. Miller N, Infante S, Cleary T. Evaluation of the LiPA MYCOBACTERIA assay for identification of mycobacterial species from BACTEC 12B bottles. J Clin Microbiol 2000; 38:1915–1919 [View Article] [PubMed]
    [Google Scholar]
  84. Gray CM, Katamba A, Narang P, Giraldo J, Zamudio C et al. Feasibility and operational performance of tuberculosis detection by loop-mediated isothermal amplification platform in decentralized settings: Results from a multicenter study. J Clin Microbiol 2016; 54:1984–1991 [View Article] [PubMed]
    [Google Scholar]
  85. Rajalahti I, Vuorinen P, Liippo K, Nieminen MM, Miettinen A. Evaluation of commercial DNA and rRNA amplification assays for assessment of treatment outcome in pulmonary tuberculosis patients. Eur J Clin Microbiol Infect Dis 2001; 20:746–750 [View Article]
    [Google Scholar]
  86. Shete PB, Farr K, Strnad L, Gray CM, Cattamanchi A. Diagnostic accuracy of TB-LAMP for pulmonary tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 2019; 19:268 [View Article] [PubMed]
    [Google Scholar]
  87. Broccolo F, Scarpellini P, Locatelli G, Zingale A, Brambilla AM et al. Rapid diagnosis of mycobacterial infections and quantitation of Mycobacterium tuberculosis load by two real-time calibrated PCR assays. J Clin Microbiol 2003; 41:4565–4572 [View Article] [PubMed]
    [Google Scholar]
  88. Ortu S, Molicotti P, Sechi LA, Pirina P, Saba F et al. Rapid detection and identification of Mycobacterium tuberculosis by Real Time PCR and Bactec 960 MIGT. New Microbiol 2006; 29:75–80 [PubMed]
    [Google Scholar]
  89. Rajalahti I, Ruokonen EL, Kotomäki T, Sintonen H, Nieminen MM. Economic evaluation of the use of PCR assay in diagnosing pulmonary TB in a low-incidence area. Eur Respir J 2004; 23:446–451 [View Article] [PubMed]
    [Google Scholar]
  90. Dundar D, Sayan M, Arslan Z, Tamer GS, Dundar V. Routine using pattern and performance of diagnostic tests for tuberculosis on a university hospital. Am J Med Sci 2010; 339:244–248 [View Article] [PubMed]
    [Google Scholar]
  91. Noordhoek GT, Mulder S, Wallace P, van Loon AM. Multicentre quality control study for detection of Mycobacterium tuberculosis in clinical samples by nucleic amplification methods. Clin Microbiol Infect 2004; 10:295–301 [View Article] [PubMed]
    [Google Scholar]
  92. Mehta PK, Raj A, Singh N, Khuller GK. Diagnosis of extrapulmonary tuberculosis by PCR. FEMS Immunol Med Microbiol 2012; 66:20–36 [View Article] [PubMed]
    [Google Scholar]
  93. Sahmi F, Sahmi M, Gévry N, Sahadevan P, Allen BG et al. A putative protein-RNA complex regulates posttranscriptional processing of cytochrome P450 aromatase (CYP19A1) in bovine granulosa cells. Mol Reprod Dev 2019; 86:1901–1908 [View Article] [PubMed]
    [Google Scholar]
  94. Rustad TR, Minch KJ, Brabant W, Winkler JK, Reiss DJ et al. Global analysis of mRNA stability in Mycobacterium tuberculosis . Nucleic Acids Res 2013; 41:509–517 [View Article] [PubMed]
    [Google Scholar]
  95. Hellyer TJ, DesJardin LE, Hehman GL, Cave MD, Eisenach KD. Quantitative analysis of mRNA as a marker for viability of Mycobacterium tuberculosis . J Clin Microbiol 1999; 37:290–295 [View Article] [PubMed]
    [Google Scholar]
  96. Pai SR, Actor JK, Sepulveda E, Hunter RL, Jagannath C. Identification of viable and non-viable Mycobacterium tuberculosis in mouse organs by directed RT-PCR for antigen 85B mRNA. Microb Pathog 2000; 28:335–342 [View Article] [PubMed]
    [Google Scholar]
  97. Jou NT, Yoshimori RB, Mason GR, Louie JS, Liebling MR. Single-tube, nested, reverse transcriptase PCR for detection of viable Mycobacterium tuberculosis . J Clin Microbiol 1997; 35:1161–1165 [View Article] [PubMed]
    [Google Scholar]
  98. Sankar S, Ramamurthy M, Nandagopal B, Sridharan G. An appraisal of PCR-based technology in the detection of Mycobacterium tuberculosis . Mol Diagn Ther 2011; 15:1–11 [View Article] [PubMed]
    [Google Scholar]
  99. da Silva Rocha A, da Costa Leite C, Torres HM, de Miranda AB, Pires Lopes MQ et al. Use of PCR-restriction fragment length polymorphism analysis of the hsp65 gene for rapid identification of mycobacteria in Brazil. J Microbiol Methods 1999; 37:223–229 [View Article] [PubMed]
    [Google Scholar]
  100. Ergin A, Kocagöz T, Us D. Evaluation of 120 mycobacterial strains isolated from clinical specimens to the species level by polymerase chain reaction-restriction enzyme analysis. Scand J Infect Dis 2000; 32:657–662 [View Article] [PubMed]
    [Google Scholar]
  101. Gingeras TR, Ghandour G, Wang E, Berno A, Small PM et al. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res 1998; 8:435–448 [View Article] [PubMed]
    [Google Scholar]
  102. RoS L, Suffys P, Barroso EC, Kerr LR, Duarte CR et al. Genotyping and drug resistance patterns of Mycobacterium tuberculosis strains observed in a tuberculosis high-burden municipality in Northeast, Brazil. Braz J Infect Dis 2013; 17:338–345 [View Article] [PubMed]
    [Google Scholar]
  103. Horne DJ, Kohli M, Zifodya JS, Schiller I, Dendukuri N et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2019; 6:CD009593 [View Article] [PubMed]
    [Google Scholar]
  104. Williamson DA, Roberts SA, Bower JE, Vaughan R, Newton S et al. Clinical failures associated with rpoB mutations in phenotypically occult multidrug-resistant Mycobacterium tuberculosis . Int J Tuberc Lung Dis 2012; 16:216–220 [View Article] [PubMed]
    [Google Scholar]
  105. Banada PP, Sivasubramani SK, Blakemore R, Boehme C, Perkins MD et al. Containment of bioaerosol infection risk by the Xpert MTB/RIF assay and its applicability to point-of-care settings. J Clin Microbiol 2010; 48:3551–3557 [View Article] [PubMed]
    [Google Scholar]
  106. MacLean E, Saravu K, Pai M. Diagnosing active tuberculosis in people living with HIV: an ongoing challenge. Curr Opin HIV AIDS 2019; 14:46–54 [View Article] [PubMed]
    [Google Scholar]
  107. Evans D, Sineke T, Schnippel K, Berhanu R, Govathson C et al. Impact of Xpert MTB/RIF and decentralized care on linkage to care and drug-resistant tuberculosis treatment outcomes in Johannesburg, South Africa. BMC Health Serv Res 2018; 18:973 [View Article] [PubMed]
    [Google Scholar]
  108. Sagili KD, Muniyandi M, Nilgiriwala KS, Shringarpure KS, Satyanarayana S et al. Cost-effectiveness of GeneXpert and LED-FM for diagnosis of pulmonary tuberculosis: A systematic review. PLoS One 2018; 13:e0205233 [View Article] [PubMed]
    [Google Scholar]
  109. Méchaï F, Bouchaud O. Tuberculous meningitis: Challenges in diagnosis and management. Rev Neurol (Paris) 2019; 175:451–457 [View Article] [PubMed]
    [Google Scholar]
  110. Tiberi S, Zumla A, Migliori GB. Multidrug and extensively drug-resistant tuberculosis: Epidemiology, clinical features, management and treatment. Infect Dis Clin North Am 2019; 33:1063–1085 [View Article] [PubMed]
    [Google Scholar]
  111. Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R et al. Immune biomarkers for diagnosis and treatment monitoring of tuberculosis: current developments and future poospects. Front Microbiol 2019; 10:2789 [View Article] [PubMed]
    [Google Scholar]
  112. Liang CN, Zhao HW, Kang J, Hou G, Yin Y. Acute mediastinitis associated with tracheobronchial tuberculosis and aspergillosis: a case report and literature review. J Int Med Res 2020; 48:300060520918469 [View Article] [PubMed]
    [Google Scholar]
  113. Steingart KR, Sohn H, Schiller I, Kloda LA, Boehme CC et al. XPERT MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2013; 1:CD009593
    [Google Scholar]
  114. Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC et al. XPERT MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2014; 1:CD009593
    [Google Scholar]
  115. Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 2016; 387:2312–2322 [View Article] [PubMed]
    [Google Scholar]
  116. Penn-Nicholson A, Mbandi SK, Thompson E, Mendelsohn SC, Suliman S et al. RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Sci Rep 2020; 10:8629 [View Article] [PubMed]
    [Google Scholar]
  117. Mulenga H, Zauchenberger CZ, Bunyasi EW, Mbandi SK, Mendelsohn SC et al. Performance of diagnostic and predictive host blood transcriptomic signatures for Tuberculosis disease: A systematic review and meta-analysis. PLoS One 2020; 15:e0237574 [View Article]
    [Google Scholar]
  118. Warsinske H, Vashisht R, Khatri P. Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures. PLoS Med 2019; 16:e1002786 [View Article] [PubMed]
    [Google Scholar]
  119. Yamaguchi N, Sasada M, Yamanaka M, Nasu M. Rapid detection of respiring Escherichia coli O157:H7 in apple juice, milk, and ground beef by flow cytometry. Cytometry A 2003; 54:27–35 [View Article] [PubMed]
    [Google Scholar]
  120. Lenaerts J, Lappin-Scott HM, Porter J. Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry. Appl Environ Microbiol 2007; 73:2020–2023 [View Article] [PubMed]
    [Google Scholar]
  121. Norden MA, Kurzynski TA, Bownds SE, Callister SM, Schell RF. Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry. J Clin Microbiol 1995; 33:1231–1237 [View Article] [PubMed]
    [Google Scholar]
  122. Bownds SE, Kurzynski TA, Norden MA, Dufek JL, Schell RF. Rapid susceptibility testing for nontuberculosis mycobacteria using flow cytometry. J Clin Microbiol 1996; 34:1386–1390 [View Article] [PubMed]
    [Google Scholar]
  123. Kirk SM, Schell RF, Moore AV, Callister SM, Mazurek GH. Flow cytometric testing of susceptibilities of Mycobacterium tuberculosis isolates to ethambutol, isoniazid, and rifampin in 24 hours. J Clin Microbiol 1998; 36:1568–1573 [View Article] [PubMed]
    [Google Scholar]
  124. DeCoster DJ, Vena RM, Callister SM, Schell RF. Susceptibility testing of Mycobacterium tuberculosis: comparison of the BACTEC TB-460 method and flow cytometric assay with the proportion method. Clin Microbiol Infect 2005; 11:372–378 [View Article] [PubMed]
    [Google Scholar]
  125. Moore AV, Kirk SM, Callister SM, Mazurek GH, Schell RF. Safe determination of susceptibility of Mycobacterium tuberculosis to antimycobacterial agents by flow cytometry. J Clin Microbiol 1999; 37:479–483 [View Article] [PubMed]
    [Google Scholar]
  126. Pina-Vaz C, Costa-de-Oliveira S, Rodrigues AG. Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16. J Med Microbiol 2005; 54:77–81 [View Article] [PubMed]
    [Google Scholar]
  127. Qin D, He X, Wang K, Tan W. Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium tuberculosis avoiding false positives. Biosens Bioelectron 2008; 24:626–631 [View Article]
    [Google Scholar]
  128. Soejima T, Iida K, Qin T, Taniai H, Yoshida S et al. anti-tuberculosis agent-injured, and dead Mycobacterium tuberculosis using flow cytometry. FEMS Microbiol Lett 2009; 294:74–81 [View Article] [PubMed]
    [Google Scholar]
  129. Janossy G. The changing pattern of “smart” flow cytometry (S-FC) to assist the cost-effective diagnosis of HIV, tuberculosis, and leukemias in resource-restricted conditions. Biotechnol J 2008; 3:32–42 [View Article] [PubMed]
    [Google Scholar]
  130. Cambau E, Wichlacz C, Truffot-Pernot C, Jarlier V. Evaluation of the new MB redox system for detection of growth of mycobacteria. J Clin Microbiol 1999; 37:2013–2015 [View Article] [PubMed]
    [Google Scholar]
  131. Samra Z, Kaufman L, Bechor J, Bahar J. Comparative study of three culture systems for optimal recovery of mycobacteria from different clinical specimens. Eur J Clin Microbiol Infect Dis 2000; 19:750–754 [View Article]
    [Google Scholar]
  132. Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 2010; 48:1549–1554 [View Article] [PubMed]
    [Google Scholar]
  133. Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B et al. MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 2011; 44:104–109 [View Article] [PubMed]
    [Google Scholar]
  134. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988; 60:2299–2301 [View Article] [PubMed]
    [Google Scholar]
  135. Cao Y, Wang L, Ma P, Fan W, Gu B et al. Accuracy of matrix-assisted laser desorption Ionization-time of flight mass spectrometry for identification of Mycobacteria: a systematic review and meta-analysis. Sci Rep 2018; 8:4131 [View Article] [PubMed]
    [Google Scholar]
  136. Balada-Llasat JM, Kamboj K, Pancholi P. Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. J Clin Microbiol 2013; 51:2875–2879 [View Article] [PubMed]
    [Google Scholar]
  137. Huang TS, Lee CC, Tu HZ, Lee SS. Rapid identification of mycobacteria from positive MGIT broths of primary cultures by MALDI-TOF mass spectrometry. PloS One 2018; 13:e0192291
    [Google Scholar]
  138. Quinlan P, Phelan E, Doyle M. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS) for the identification of mycobacteria from MBBacT ALERT 3D liquid cultures and Lowenstein-Jensen (LJ) solid cultures. J Clin Pathol 2015; 68:229–235 [View Article] [PubMed]
    [Google Scholar]
  139. Kodana M, Tarumoto N, Kawamura T, Saito T, Ohno H et al. Utility of the MALDI-TOF MS method to identify nontuberculous mycobacteria. J Infect Chemother 2016; 22:32–35 [View Article] [PubMed]
    [Google Scholar]
  140. Su K-Y, Yan BS, Chiu HC, Yu C-J, Chang SY et al. Rapid sputum multiplex detection of the M. tuberculosis complex (MTBC) and resistance mutations for eight antibiotics by Nucleotide MALDI-TOF MS. Sci Rep 2017; 7:41486 [View Article] [PubMed]
    [Google Scholar]
  141. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467 [View Article] [PubMed]
    [Google Scholar]
  142. Henson J, Tischler G, Ning Z. Next-generation sequencing and large genome assemblies. Pharmacogenomics 2012; 13:901–915 [View Article] [PubMed]
    [Google Scholar]
  143. Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F. Whole genome sequencing of Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks: A systematic review. Tuberculosis (Edinb) 2016; 98:77–85 [View Article] [PubMed]
    [Google Scholar]
  144. Hatherell HA, Colijn C, Stagg HR, Jackson C, Winter JR et al. Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 2016; 14:21 [View Article] [PubMed]
    [Google Scholar]
  145. Papaventsis D, Casali N, Kontsevaya I, Drobniewski F, Cirillo DM et al. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin Microbiol Infect 2017; 23:61–68 [View Article] [PubMed]
    [Google Scholar]
  146. Witney AA, Cosgrove CA, Arnold A, Hinds J, Stoker NG et al. Clinical use of whole genome sequencing for Mycobacterium tuberculosis . BMC Med 2016; 14:46 [View Article] [PubMed]
    [Google Scholar]
  147. Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT et al. Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 2015; 53:2230–2237 [View Article] [PubMed]
    [Google Scholar]
  148. WHO The Use of Next-Generation Sequencing Technologies For The Detection of Mutations Associated with Drug Resistance in Mycobacterium Tberculosis Complex: Technical Guide Geneva: World Health Organization; 2018
    [Google Scholar]
  149. Rodríguez-Lázaro D, D’Agostino M, Herrewegh A, Pla M, Cook N et al. Real-time PCR-based methods for detection of Mycobacterium avium subsp. paratuberculosis in water and milk. Int J Food Microbiol 2005; 101:93–104 [View Article] [PubMed]
    [Google Scholar]
  150. Espasa M, González-Martín J, Alcaide F, Aragón LM, Lonca J et al. Direct detection in clinical samples of multiple gene mutations causing resistance of Mycobacterium tuberculosis to isoniazid and rifampicin using fluorogenic probes. J Antimicrob Chemother 2005; 55:860–865 [View Article] [PubMed]
    [Google Scholar]
  151. Brooks BW, Devenish J, Lutze-Wallace CL, Milnes D, Robertson RH et al. Evaluation of a monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Campylobacter fetus in bovine preputial washing and vaginal mucus samples. Vet Microbiol 2004; 103:77–84 [View Article] [PubMed]
    [Google Scholar]
  152. Golichenari B, Nosrati R, Farokhi-Fard A, Faal Maleki M, Gheibi Hayat SM et al. Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol 2019; 39:1056–1077 [View Article] [PubMed]
    [Google Scholar]
  153. Oh B-K, Lee W, Kim YK, Lee WH, Choi JW. Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi . J Biotechnol 2004; 111:1–8 [View Article] [PubMed]
    [Google Scholar]
  154. Gupta UD, Katoch K, Singh HB, Natrajan M, Sharma VD et al. Assessment of viability by normal mouse foot-pad and bacillary ATP bioluminescence assay in multibacillary cases treated with an MDT regimen using conventional as well as newer drugs like minocycline and ofloxacin. Indian J Lepr 2000; 72:437–442 [PubMed]
    [Google Scholar]
  155. McFeters GA, Pyle BH, Lisle JT, Broadaway SC. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms. Soc Appl Microbiol symp ser 1999; 85:193S–200S
    [Google Scholar]
  156. Hibi K, Mitsubayashi K, Fukuda H, Ushio H, Hayashi T et al. Rapid direct determination using combined separation by prepared immunomagnetic and flow cytometry of Flavobacterium psychrophilum . Biosensors and Bioelectronics 2007; 22:1916–1919 [View Article]
    [Google Scholar]
  157. Alexander KA, Laver PN, Michel AL, Williams M, van Helden PD et al. Novel Mycobacterium tuberculosis complex pathogen, M. mungi . Emerg Infect Dis 2010; 16:1296–1299 [View Article] [PubMed]
    [Google Scholar]
  158. Cousins DV, Peet RL, Gaynor WT, Williams SN, Gow BL. Tuberculosis in imported hyrax (Procavia capensis) caused by an unusual variant belonging to the Mycobacterium tuberculosis complex. Vet Microbiol 1994; 42:135–145 [View Article] [PubMed]
    [Google Scholar]
  159. Parsons SD, Drewe JA, Gey van Pittius NC, Warren RM, van Helden PD. Novel cause of tuberculosis in meerkats, South Africa. Emerg Infect Dis 2013; 19:2004–2007 [View Article] [PubMed]
    [Google Scholar]
  160. van Ingen J, Rahim Z, Mulder A, Boeree MJ, Simeone R et al. Characterization of Mycobacterium orygis as M. tuberculosis complex subspecies. Emerg Infect Dis 2012; 18:653–655 [View Article] [PubMed]
    [Google Scholar]
  161. Wells A. Tuberculosis in wild voles. Lancet 1937; 139:917
    [Google Scholar]
  162. Cousins DV, Williams SN, Reuter R, Forshaw D, Chadwick B et al. Tuberculosis in wild seals and characterisation of the seal bacillus. Aust Vet J 1993; 70:92–97 [View Article] [PubMed]
    [Google Scholar]
  163. Aranaz A, Liébana E, Gómez-Mampaso E, Galán JC, Cousins D et al. Mycobacterium tuberculosis subsp. caprae subsp. nov.: a taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. Int J Syst Bacteriol 1999; 49:1263–1273 [View Article] [PubMed]
    [Google Scholar]
  164. Karlson AG, Lessel EF. Mycobacterium bovis nom. nov. Int J Syst Evol Microbiol 1970; 20:273–282
    [Google Scholar]
  165. Karimi H, En-Nanai L, Oudghiri A, Chaoui I, Laglaoui A et al. Performance of GenoType MTBDRplus assay in the diagnosis of drug-resistant tuberculosis in Tangier, Morocco. J Glob Antimicrob Resist 2018; 12:63–67 [View Article] [PubMed]
    [Google Scholar]
  166. Singh K, Kumari R, Tripathi R, Gupta A, Anupurba S. Mutation in MPT64 gene influencing diagnostic accuracy of SD Bioline assay (capilia. BMC Infect Dis 2019; 19:1048 [View Article] [PubMed]
    [Google Scholar]
  167. Al-Mutairi NM, Ahmad S, Mokaddas EM. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates identifies local transmission of infection in Kuwait, a country with a low incidence of TB and MDR-TB. Eur J Med Res 2019; 24:38 [View Article] [PubMed]
    [Google Scholar]
  168. Gkaravela L, Papadimitriou-Olivgeris M, Foka A, Kolonitsiou F, Spiliopoulou A et al. Combination of commercially available molecular assays and culture based methods in diagnosis of tuberculosis and drug resistant tuberculosis. Braz J Microbiol 2017; 48:785–790 [View Article] [PubMed]
    [Google Scholar]
  169. Abdel-Moein KA, Hamed O, Fouad H. Molecular detection of Mycobacterium tuberculosis in cattle and buffaloes: a cause for public health concern. Trop Anim Health Prod 2016; 48:1541–1545 [View Article] [PubMed]
    [Google Scholar]
  170. Lee YS, Kang HR, Lee SH, Kim Y, Kim MY et al. Diagnostic usefulness of the GenoType MTBDRplus assay for detecting drug-resistant tuberculosis using AFB smear-negative specimens with positive TB-PCR result. Infect Dis (Lond) 2016; 48:350–355 [View Article] [PubMed]
    [Google Scholar]
  171. Theron G, Peter J, Richardson M, Barnard M, Donegan S et al. The diagnostic accuracy of the genotype MTBDRsl assay for the detection of resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev 2014; 10:CD010705
    [Google Scholar]
  172. Mokry J, Porvaznik I, Kusnir P, Dohal M, Solovic I. Detection of resistance to anti-tuberculosis drugs in the clinical isolates of Mycobacterium tuberculosis from Slovakia through comparison between phenotypic and genetic methods and evaluation of resistance levels with clinical parameter. J Physiol Pharmacol 2019; 70: [View Article] [PubMed]
    [Google Scholar]
  173. Mao X, Ke Z, Shi X, Liu S, Tang B et al. Diagnosis of drug resistance to Fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol with genotype MTBDRsl assay: a meta-analysis. Ann Clin Lab Sci 2015; 45:533–544 [PubMed]
    [Google Scholar]
  174. Sajduda A, Brzostek A, Poplawska M, Augustynowicz-Kopec E, Zwolska Z et al. Molecular characterization of rifampin- and isoniazid-resistant Mycobacterium tuberculosis strains isolated in Poland. J Clin Microbiol 2004; 42:2425–2431 [View Article] [PubMed]
    [Google Scholar]
  175. Helb D, Jones M, Story E, Boehme C, Wallace E et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 2010; 48:229–237 [View Article] [PubMed]
    [Google Scholar]
  176. Rao P, Chawla K, Shenoy VP, Mukhopadhyay C. Role of real-time PCR for detection of tuberculosis and drug resistance directly from clinical samples. Indian J Tuberc 2016; 63:149–153 [View Article] [PubMed]
    [Google Scholar]
  177. Sharma K, Modi M, Kaur H, Sharma A, Ray P et al. rpoB gene high-resolution melt curve analysis: a rapid approach for diagnosis and screening of drug resistance in tuberculous meningitis. Diagn Microbiol Infect Dis 2015; 83:144–149 [View Article] [PubMed]
    [Google Scholar]
  178. Riahi F, Derakhshan M, Mosavat A, Soleimanpour S, Rezaee SA. Evaluation of point mutation detection in Mycobacterium tuberculosis with isoniazid resistance using real-time PCR and TaqMan probe assay. Appl Biochem Biotechnol 2015; 175:2447–2455 [View Article] [PubMed]
    [Google Scholar]
  179. Mokrousov I, Vyazovaya A, Zhuravlev V, Otten T, Millet J et al. Real-time PCR assay for rapid detection of epidemiologically and clinically significant Mycobacterium tuberculosis Beijing genotype isolates. J Clin Microbiol 2014; 52:1691–1693 [View Article] [PubMed]
    [Google Scholar]
  180. Chauhan DS, Sharma R, Parashar D, Sharma P, Das R et al. Early detection of multidrug resistant (MDR) Mycobacterium tuberculosis in a single tube with in-house designed fluorescence resonance energy transfer (FRET) probes using real-time PCR. Indian J Exp Biol 2016; 54:229–236 [PubMed]
    [Google Scholar]
  181. Wang M-G, Xue M, Wu S-Q, Zhang M-M, Wang Y et al. Abbott RealTime MTB and MTB RIF/INH assays for the diagnosis of tuberculosis and rifampicin/isoniazid resistance. Infect Genet Evol 2019; 71:54–59 [View Article] [PubMed]
    [Google Scholar]
  182. Hofmann-Thiel S, Molodtsov N, Duffner C, Kadyrov A, Kalmambetova G et al. Capacity of Abbott RealTime MTB RIF/INH to detect rifampicin- and isoniazid-resistant tuberculosis. Int J Tuberc Lung Dis 2019; 23:458–464 [View Article] [PubMed]
    [Google Scholar]
  183. Ruiz P, Causse M, Vaquero M, Gutierrez JB, Casal M. Evaluation of a new automated Abbott RealTime MTB RIF/INH assay for qualitative detection of rifampicin/isoniazid resistance in pulmonary and extra-pulmonary clinical samples of Mycobacterium tuberculosis . Infect Drug Resist 2017; 10:463–467 [View Article] [PubMed]
    [Google Scholar]
  184. Kumari R, Banerjee T, Anupurba S. Molecular detection of drug resistance to ofloxacin and kanamycin in Mycobacterium tuberculosis by using multiplex allele-specific PCR. J Infect Public Health 2018; 11:54–58 [View Article] [PubMed]
    [Google Scholar]
  185. Salim S, Zaman G, Younis S, Hussain W, Khurshid U et al. Multiplex PCR for rapid diagnosis of drug resistant Mycobacterium tuberculosis . J Coll Physicians Surg Pak 2019; 29:833–837 [View Article] [PubMed]
    [Google Scholar]
  186. Sinha P, Banerjee T, Srivastava GN, Anupurba S. Rapid detection of drug-resistant Mycobacterium tuberculosis directly from clinical specimens using allele-specific polymerase chain reaction assay. Indian J Med Res 2019; 150:33–42 [View Article] [PubMed]
    [Google Scholar]
  187. Munir S, Mahmood N, Shahid S, Khan MI. Molecular detection of Isoniazid, Rifampin and Ethambutol resistance to M. tuberculosis and M. bovis in multidrug resistant tuberculosis (MDR-TB) patients in Pakistan. Microb Pathog 2017; 110:262–274 [View Article] [PubMed]
    [Google Scholar]
  188. Tam KK, Leung KS, Siu GK, Chang KC, Wong SS et al. Direct detection of pyrazinamide resistance in Mycobacterium tuberculosis by use of pncA PCR sequencing. J Clin Microbiol 2019; 57: [View Article] [PubMed]
    [Google Scholar]
  189. Ullah I, Ahmad W, Shah AA, Shahzada A, Tahir Z et al. Detection of rifampicin resistance of Mycobacterium tuberculosis using multiplex allele specific polymerase chain reaction (MAS-PCR) in Pakistan. Infect Genet Evol 2019; 71:42–46 [View Article] [PubMed]
    [Google Scholar]
  190. Mistri SK, Sultana M, Kamal SM, Alam MM, Irin F et al. Evaluation of efficiency of nested multiplex allele-specific PCR assay for detection of multidrug resistant tuberculosis directly from sputum samples. Lett Appl Microbiol 2016; 62:411–418 [View Article] [PubMed]
    [Google Scholar]
  191. Majumdar T, Bhattacharya S, Barman D, Bhoumik P, Bir R. Detection of multidrug-resistant tuberculosis using MGITTM(TM) and MAS-PCR in Tripura, India. Int J Tuberc Lung Dis 2016; 20:166–169 [View Article] [PubMed]
    [Google Scholar]
  192. Thirumurugan R, Kathirvel M, Vallayyachari K, Surendar K, Samrot AV et al. Molecular analysis of rpoB gene mutations in rifampicin resistant Mycobacterium tuberculosis isolates by multiple allele specific polymerase chain reaction in Puducherry, South India. J Infect Public Health 8:619–625 [View Article] [PubMed]
    [Google Scholar]
  193. Riaz M, Mahmood Z, Javed MT, Javed I, Shahid M et al. Drug resistant strains of Mycobacterium tuberculosis identified through PCR-RFLP from patients of Central Punjab, Pakistan. Int J Immunopathol Pharmacol 2016; 29:443–449 [View Article] [PubMed]
    [Google Scholar]
  194. Javed I, Mahmood Z, Shahid M, Khaliq T. Identification of ofloxacin-resistant Mycobacterium tuberculosis by PCR-RFLP and sequencing. Pak J Pharm Sci 2016; 29:281–286 [PubMed]
    [Google Scholar]
  195. Flores-Treviño S, Morfín-Otero R, Rodríguez-Noriega E, González-Díaz E, Pérez-Gómez HR et al. Characterization of phenotypic and genotypic drug resistance patterns of Mycobacterium tuberculosis isolates from a city in Mexico. Enferm Infecc Microbiol Clin 2015; 33:181–185 [View Article] [PubMed]
    [Google Scholar]
  196. Castan P, de Pablo A, Fernández-Romero N, Rubio JM, Cobb BD et al. Point-of-care system for detection of Mycobacterium tuberculosis and rifampin resistance in sputum samples. J Clin Microbiol 2014; 52:502–507 [View Article] [PubMed]
    [Google Scholar]
  197. Luukinen BV, Vuento R, Hirvonen JJ. Evaluation of a semi-automated Seegene PCR workflow with MTB, MDR, and NTM detection for rapid screening of tuberculosis in a low-prevalence setting. APMIS 2020; 128:406–413 [View Article] [PubMed]
    [Google Scholar]
  198. Sali M, De Maio F, Caccuri F, Campilongo F, Sanguinetti M et al. Multicenter evaluation of Anyplex plus MTB/NTM MDR-TB assay for rapid detection of Mycobacterium tuberculosis complex and multidrug-resistant isolates in pulmonary and extrapulmonary specimens. J Clin Microbiol 2016; 54:59–63 [View Article] [PubMed]
    [Google Scholar]
  199. Pérez-García F, Ruiz-Serrano MJ, López Roa P, Acosta F, Pérez-Lago L et al. Diagnostic performance of Anyplex II MTB/MDR/XDR for detection of resistance to first and second line drugs in Mycobacterium tuberculosis . J Microbiol Methods 2017; 139:74–78 [View Article] [PubMed]
    [Google Scholar]
  200. Karunaratne RE, Wijenayaka LA, Wijesundera SS, De Silva KMN, Adikaram CP et al. Use of nanotechnology for infectious disease diagnostics: application in drug resistant tuberculosis. BMC Infect Dis 2019; 19:618 [View Article] [PubMed]
    [Google Scholar]
  201. Haddaoui M, Sola C, Raouafi N, Korri-Youssoufi H. E-DNA detection of rpoB gene resistance in Mycobacterium tuberculosis in real samples using Fe3O4/polypyrrole nanocomposite. Biosens Bioelectron 2019; 128:76–82 [View Article]
    [Google Scholar]
  202. Bengtson HN, Homolka S, Niemann S, Reis AJ, da Silva PE et al. Multiplex detection of extensively drug resistant tuberculosis using binary deoxyribozyme sensors. Biosens Bioelectron 2017; 94:176–183 [View Article]
    [Google Scholar]
  203. Yin F, Chan JF, Zhu Q, Fu R, Chen JH et al. Development and in-use evaluation of a novel Luminex MicroPlex microsphere-based (TRIOL) assay for simultaneous identification of Mycobacterium tuberculosis and detection of first-line and second-line anti-tuberculous drug resistance in China. J Clin Pathol 2017; 70:342–349 [View Article] [PubMed]
    [Google Scholar]
  204. Driesen M, Kondo Y, de Jong BC, Torrea G, Asnong S et al. Evaluation of a novel line probe assay to detect resistance to pyrazinamide, a key drug used for tuberculosis treatment. Clin Microbiol Infect 2018; 24:60–64 [View Article] [PubMed]
    [Google Scholar]
  205. Willby MJ, Wijkander M, Havumaki J, Johnson K, Werngren J et al. Detection of Mycobacterium tuberculosis pncA mutations by the Nipro genoscholar PZA-TB II assay compared to conventional sequencing. Antimicrob Agents Chemother 2018; 62: [View Article] [PubMed]
    [Google Scholar]
  206. Rowneki M, Aronson N, Du P, Sachs P, Blakemore R et al. Detection of drug resistant Mycobacterium tuberculosis by high-throughput sequencing of DNA isolated from acid fast bacilli smears. PloS One 2020; 15:e0232343 [View Article] [PubMed]
    [Google Scholar]
  207. Karimi H, Oudghiri A, En-Nanei L, Mzibri ME, Laglaoui A et al. Frequency of genomic mutations mediating resistance of Mycobacterium tuberculosis isolates to rifampicin in Northern Morocco. Rev Inst Med Trop Sao Paulo 2020; 62:e37 [View Article] [PubMed]
    [Google Scholar]
  208. Jhanjhria S, Kashyap B, Gomber S, Gupta N, Hyanki P et al. Phenotypic isoniazid resistance and associated mutations in pediatric tuberculosis. Indian J Tuberc 2019; 66:474–479 [View Article] [PubMed]
    [Google Scholar]
  209. Yadav R, Saini A, Mankotia J, Khaneja R, Agarwal P et al. Genetic characterization of Second-Line Drug-Resistant and extensively drug-resistant Mycobacterium tuberculosis from the Northern region of India. J Epidemiol Glob Health 2018; 8:220–224 [View Article] [PubMed]
    [Google Scholar]
  210. Wang Z, Xie T, Mu C, Wang C, Ju H et al. Molecular characteristics of ofloxacin mono-resistant Mycobacterium tuberculosis isolates from new and previously treated tuberculosis patients. Journal of Clinical Laboratory Analysis 2018; 32:
    [Google Scholar]
  211. Oh TS, Kim YJ, Kang HY, Kim CK, Cho SY et al. RNA expression analysis of efflux pump genes in clinical isolates of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in South Korea. Infect Genet Evol 2017; 49:111–115 [View Article] [PubMed]
    [Google Scholar]
  212. Jagielski T, Bakuła Z, Roeske K, Kamiński M, Napiórkowska A et al. Mutation profiling for detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates. J Antimicrob Chemother 2015; 70:3214–3221 [View Article] [PubMed]
    [Google Scholar]
  213. Martinez E, Holmes N, Jelfs P, Sintchenko V. Genome sequencing reveals novel deletions associated with secondary resistance to pyrazinamide in MDR Mycobacterium tuberculosis . J Antimicrob Chemother 2015; 70:2511–2514 [View Article] [PubMed]
    [Google Scholar]
  214. Jagielski T, Bakuła Z, Roeske K, Kamiński M, Napiórkowska A et al. Detection of mutations associated with isoniazid resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates. J Antimicrob Chemother 2014; 69:2369–2375 [View Article] [PubMed]
    [Google Scholar]
  215. Gopinath K, Singh S. Multiplex PCR assay for simultaneous detection and differentiation of Mycobacterium tuberculosis, Mycobacterium avium complexes and other Mycobacterial species directly from clinical specimens. J Appl Microbiol 2009; 107:425–435 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000245
Loading
/content/journal/acmi/10.1099/acmi.0.000245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error