1887

Abstract

In the framework of the research project called , we have isolated and characterized a bacterial plant-endophyte from the rhizomes of , hereafter referred to as strain FIT81. The bacterium is Gram negative, rod-shaped with lophotrichous flagella, and catalase- and oxidase-positive. The optimal growth temperature of strain FIT81 is 28 °C, although it can grow within a temperature range of 4–32 °C. The pH growth tolerance ranges between pH 5 and 10, and it tolerates 4% (w/v) NaCl. A 16S rRNA phylogenetic analysis positioned strain FIT81 within the genus , and multilocus sequence analysis revealed that IzPS32d, MS586, IzPS23, '' 46–2 and PS9-14 are the top five most closely related species, which were selected for further genome-to-genome comparisons, as well as for physiological and chemotaxonomic characterization. The genome size of strain FIT81 is 6 492 796 base-pairs long, with 60.6 mol% of G+C content. Average nucleotide identity and digital DNA–DNA hybridization analyses yielded values of 93.6 and 56.1%, respectively, when the FIT81 genome was compared to that of the closest type strain IzPS32d. Taken together, the obtained genomic, physiologic and chemotaxonomic data indicate that strain FIT81 is different from its closest relative species, which lead us to suggest that it is a novel species to be included in the list of type strains with the name sp. nov. (FIT81=CECT 30374=DSM 112699).

Funding
This study was supported by the:
  • Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación (Spain) (Award RTC-2017-6431)
    • Principle Award Recipient: TeresaAltabella
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005557
2022-10-19
2024-04-27
Loading full text...

Full text loading...

References

  1. Kandel SL, Joubert PM, Doty SL. Bacterial endophyte colonization and distribution within plants. Microorganisms 2017; 5:77 [View Article]
    [Google Scholar]
  2. Berg G, Köberl M, Rybakova D, Müller H, Grosch R et al. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol 2017; 93:10 [View Article]
    [Google Scholar]
  3. Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 2016; 7:1538 [View Article] [PubMed]
    [Google Scholar]
  4. Hagaggi NSA, Mohamed AAA. Plant-bacterial endophyte secondary metabolite matching: a case study. Arch Microbiol 2020; 202:2679–2687 [View Article] [PubMed]
    [Google Scholar]
  5. Rieusset L, Rey M, Muller D, Vacheron J, Gerin F et al. Secondary metabolites from plant-associated Pseudomonas are overproduced in biofilm. Microb Biotechnol 2020; 13:1562–1580 [View Article] [PubMed]
    [Google Scholar]
  6. Peix A, Ramírez-Bahena MH, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: an update. Infect Genet Evol 2018; 57:106–116 [View Article] [PubMed]
    [Google Scholar]
  7. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [View Article] [PubMed]
    [Google Scholar]
  8. Rudra B, Gupta RS. Phylogenomic and comparative genomic analyses of species of the family Pseudomonadaceae: proposals for the genera Halopseudomonas gen. nov. and Atopomonas gen. nov., merger of the genus Oblitimonas with the genus Thiopseudomonas, and transfer of some misclassified species of the genus Pseudomonas into other genera. Int J Syst Evol Microbiol 2021; 71:10 [View Article] [PubMed]
    [Google Scholar]
  9. Kumar A, Singh R, Yadav A, Giri DD, Singh PK et al. Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 2016; 6:60 [View Article]
    [Google Scholar]
  10. Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC et al. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS One 2013; 8:e56018 [View Article]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  14. Matsubara H, Yamanaka T. Evolution of Protein Molecules. In Munro HN. eds Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  15. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article]
    [Google Scholar]
  16. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  17. Scales BS, Erb-Downward JR, Huffnagle IM, LiPuma JJ, Huffnagle GB. Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs. BMC Genomics 2015; 16:1032 [View Article] [PubMed]
    [Google Scholar]
  18. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article]
    [Google Scholar]
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  20. Morimoto Y, Lu YJ, Zuo H, Aibibula Z, Tohya M et al. Pseudomonas allokribbensis sp. nov. and Pseudomonas gozinkensis sp. nov., two new species isolated from a Volcanic Island, Izu Oshima, Japan. Curr Microbiol 2021; 78:1670–1677 [View Article]
    [Google Scholar]
  21. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  22. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  26. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article] [PubMed]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  28. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  30. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article]
    [Google Scholar]
  31. Omoboye OO, Oni FE, Batool H, Yimer HZ, De Mot R et al. Pseudomonas cyclic lipopeptides suppress the rice blast fungus Magnaporthe oryzae by induced resistance and direct antagonism. Front Plant Sci 2019; 10:901 [View Article]
    [Google Scholar]
  32. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 2014; 158:412–421 [View Article] [PubMed]
    [Google Scholar]
  33. McClure RA, Goering AW, Ju K-S, Baccile JA, Schroeder FC et al. Elucidating the rimosamide-detoxin natural product families and their biosynthesis using metabolite/gene cluster correlations. ACS Chem Biol 2016; 11:3452–3460 [View Article] [PubMed]
    [Google Scholar]
  34. Stintzi A, Johnson Z, Stonehouse M, Ochsner U, Meyer JM et al. The pvc gene cluster of Pseudomonas aeruginosa: role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS. J Bacteriol 1999; 181:4118–4124 [View Article] [PubMed]
    [Google Scholar]
  35. Stintzi A, Cornelis P, Hohnadel D, Meyer J-M, Dean C et al. Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. Microbiology 1996; 142:1181–1190 [View Article]
    [Google Scholar]
  36. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 2007; 25:1007–1014 [View Article] [PubMed]
    [Google Scholar]
  37. Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 2004; 186:1084–1096 [View Article] [PubMed]
    [Google Scholar]
  38. Arakawa K, Sugino F, Kodama K, Ishii T, Kinashi H. Cyclization mechanism for the synthesis of macrocyclic antibiotic lankacidin in Streptomyces rochei. Chem Biol 2005; 12:249–256 [View Article] [PubMed]
    [Google Scholar]
  39. Kinashi H, Fujii S, Hatani A, Kurokawa T, Shinkawa H. Physical mapping of the linear plasmid pSLA2-L and localization of the eryAI and actI homologs. Biosci Biotechnol Biochem 1998; 62:1892–1897 [View Article] [PubMed]
    [Google Scholar]
  40. Suwa M, Sugino H, Sasaoka A, Mori E, Fujii S et al. Identification of two polyketide synthase gene clusters on the linear plasmid pSLA2-L in Streptomyces rochei. Gene 2000; 246:123–131 [View Article] [PubMed]
    [Google Scholar]
  41. Hiratsu K, Mochizuki S, Kinashi H. Cloning and analysis of the replication origin and the telomeres of the large linear plasmid pSLA2-L in Streptomyces rochei. Mol Gen Genet 2000; 263:1015–1021 [View Article] [PubMed]
    [Google Scholar]
  42. Mochizuki S, Hiratsu K, Suwa M, Ishii T, Sugino F et al. The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol Microbiol 2003; 48:1501–1510 [View Article] [PubMed]
    [Google Scholar]
  43. Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 2004; 186:1084–1096 [View Article] [PubMed]
    [Google Scholar]
  44. Jenul C, Sieber S, Daeppen C, Mathew A, Lardi M et al. Biosynthesis of fragin is controlled by a novel quorum sensing signal. Nat Commun 2018; 9:1297 [View Article]
    [Google Scholar]
  45. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res 2020; 48:D454–D458 [View Article]
    [Google Scholar]
  46. Ali S, Duan J, Charles TC, Glick BR. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol 2014; 343:193–198 [View Article] [PubMed]
    [Google Scholar]
  47. Jahn L, Hofmann U, Ludwig-Müller J. Indole-3-acetic acid Is synthesized by the endophyte Cyanodermella asteris via a tryptophan-dependent and -independent way and mediates the interaction with a non-host plant. Int J Mol Sci 2021; 22:2651 [View Article]
    [Google Scholar]
  48. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 2015; 6:745 [View Article]
    [Google Scholar]
  49. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A et al. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 2009; 75:748–757 [View Article] [PubMed]
    [Google Scholar]
  50. Cueva-Yesquén LG, Goulart MC, Attili de Angelis D, Nopper Alves M, Fantinatti-Garboggini F. Multiple plant growth-promotion traits in endophytic bacteria retrieved in the vegetative stage from passionflower. Front Plant Sci 2020; 11:621740 [View Article]
    [Google Scholar]
  51. Jiménez-Gómez A, García-Estévez I, Escribano-Bailón MT, García-Fraile P, Rivas R. Bacterial fertilizers based on Rhizobium laguerreae and Bacillus halotolerans enhance Cichorium endivia L. phenolic compound and mineral contents and plant development. Foods 2021; 10:424 [View Article]
    [Google Scholar]
  52. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307 [PubMed]
    [Google Scholar]
  53. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  54. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  55. Moss CW, Lambert-Fair MA. Location of double bonds in monounsaturated fatty acids of Campylobacter cryaerophila with dimethyl disulfide derivatives and combined gas chromatography-mass spectrometry. J Clin Microbiol 1989; 27:1467–1470 [View Article] [PubMed]
    [Google Scholar]
  56. Yu QT, Liu BN, Zhang JY, Huang ZH. Location of methyl branchings in fatty acids: fatty acids in uropygial secretion of Shanghai duck by GC-MS of 4,4-dimethyloxazoline derivatives. Lipids 1988; 23:804–810 [View Article] [PubMed]
    [Google Scholar]
  57. Spitzer V. Structure analysis of fatty acids by gas chromatography–low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives–a review. Prog Lipid Res 1996; 35:387–408 [View Article]
    [Google Scholar]
  58. Harvey DJ. Picolinyl esters as derivatives for the structural determination of long chain branched and unsaturated fatty acids. Biol Mass Spectrom 1982; 9:33–38 [View Article]
    [Google Scholar]
  59. Palleroni NJ. Genus I. Pseudomonas Migula 1894, 237AL (nom. cons., Opin. 5 of the Jud. Comm. 1952, 121). In Brenner DJ, Castenholz RW, Garrity GM, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 2B Boone New York: Springer; 1952 pp 323–379
    [Google Scholar]
  60. Chang D-H, Rhee M-S, Kim J-S, Lee Y, Park MY et al. Pseudomonas kribbensis sp. nov., isolated from garden soils in Daejeon, Korea. Antonie van Leeuwenhoek 2016; 109:1433–1446 [View Article]
    [Google Scholar]
  61. Jia J, Wang X, Deng P, Ma L, Baird SM et al. Pseudomonas glycinae sp. nov. isolated from the soybean rhizosphere. Microbiol Open 2020; 9:e1101 [View Article]
    [Google Scholar]
  62. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 2020; 37:911–917 [View Article]
    [Google Scholar]
  63. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology John Wiley & Sons, Ltd; 2017 pp 330–393
    [Google Scholar]
  64. Kwon SW, Kim JS, Park IC, Yoon SH, Park DH et al. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. Int J Syst Evol Microbiol 2003; 53:21–27 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005557
Loading
/content/journal/ijsem/10.1099/ijsem.0.005557
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error