1887

Abstract

, part of the group’, has the ability to produce glycosaminoglycan depolymerising enzymes (hyaluronidase and chrondroitin sulphate depolymerase) which is unique amongst the viridans streptococci and may contribute to their virulence in brain and liver abscesses. The growth of strain UNS 35 was studied in basal medium supplemented with chondroitin sulphate A (CS-A, sulphated at position 4 of the N-acetylgalactosamine moiety) or chondroitin sulphate C (CS-C, sulphated at position 6 of the N-acetylgalactosamine moiety) as the major carbohydrate source. CS-A but not CS-C supported the growth of Extracellular degradation of CS-A resulted in the initial accumulation of 2-acetamido-2-deoxy-3-O-(β-D-gluco-4-δenepyranosyluronic acid)-D-galactose (δUA GalNAc-0S), and low levels of 2-acetamido-2-deoxy-3-O-(β-D-gluco-4-δenepyranosyl uronic acid)-4-O-sulpho-D-galactose (δUA GalNAc-4S) in the medium with GalNAc-0S being subsequently utilised during bacterial growth. Metabolic end-products included formate and ethanol but not lactate, indicating that growth was probably carbon-limited. The CS-A contained 30% CS-C, which was also depolymerised resulting in the formation of 2-acetamido-2-deoxy-3-O-(β-D-gluco-4-δenepyranosyluronic acid)-6-O-sulpho-D-galactose (δUA GalNAc-6S) in the culture supernate, but this unsaturated disaccharide was apparently not utilised during growth. The results indicate that produced CS-AC depolymerase, which was inducible and extracellular, and sulphatase activity. Experiments with authentic δUA GalNAc-4S and δUA GalNAc-6S demonstrated that δUA GalNAc-4S rather than δUA GalNAc-6S was the preferred substrate for the sulphatase. Therefore, it is suggested that the CS-AC depolymerase of may play a role in the destruction of CS in host tissues, facilitating bacterial spread, and also in bacterial nutrition by the liberation of nutrients at the site of infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-44-5-372
1996-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/44/5/medmicro-44-5-372.html?itemId=/content/journal/jmm/10.1099/00222615-44-5-372&mimeType=html&fmt=ahah

References

  1. Whiley R. A., Beighton D. Emended descriptions and recognition of Streptococcus constellatus, Streptococcus intermedius, Stretococcus anginosus as distinct species. Int J Syst Bacteriol 1991; 41:1–5
    [Google Scholar]
  2. Gossling J. Occurrence and pathogenicity of the Streptococcus milleri group. Rev Infect Dis 1988; 10:257–285
    [Google Scholar]
  3. Parker M. T., Ball L. C. Streptococci and aerococci associated with systemic infection in man. J Med Microbiol 1976; 9:275–302
    [Google Scholar]
  4. Ruoff K. L. Streptococcus anginosus “Streptococcus milleri”: the unrecognized pathogen. Clin Microbiol Rev 1988; 1:102–108
    [Google Scholar]
  5. Ruoff K. L., Ferraro M. J. Hydrolytic enzymes of “Streptococcus milleri” . J Clin Microbiol 1987; 25:1645–1647
    [Google Scholar]
  6. Unsworth P. F. Hyaluronidase production in Streptococcus milleri in relation to infection. J Clin Pathol 1989; 42:506–510
    [Google Scholar]
  7. Kjellen L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem 1991; 60:443–475
    [Google Scholar]
  8. Abramson C. Staphylococcal hyaluronidase isoenzyme profiles related to staphylococcal disease. Ann NY Acad Sci 1974; 236:495–507
    [Google Scholar]
  9. Paton J. C., Andrew P. W., Boulnois G. J., Mitchell T. J. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol 1993; 47:89–115
    [Google Scholar]
  10. Steffen E. K., Hentges D. J. Hydrolytic enzymes of anaerobic bacteria isolated from human infections. J Clin Microbiol 1981; 14:153–156
    [Google Scholar]
  11. Kennedy J. F. Proteoglycans – biological and chemical aspects in human life. Amsterdam: Elsevier Scientific Publishing Company; 1979195–223
    [Google Scholar]
  12. Linker A., Hoffman P., Meyer K., Sampson P., Korn E. D. The formation of unsaturated disaccharides from mucopolysaccharides and their cleavage to α-keto acids by bacterial enzymes. J Biol Chem 1960; 235:3061–3065
    [Google Scholar]
  13. Linker A., Meyer K., Hoffman P. The production of unsaturated uronides by bacterial hyaluronidases. J Biol Chem 1956; 219:13–25
    [Google Scholar]
  14. Osano E., Hibi E., Ozeki M., Fujii Y., Moriyama T. Chondroitin sulfate-depolymerizing activity in Streptococcus intermedius and other streptococci. Microbiol Immunol 1987; 31:1127–1130
    [Google Scholar]
  15. Whiley R. A., Hardie J. M. DNA-DNA hybridization studies and phenotypic characteristics of strains within the ‘Streptococcus milleri group’. J Gen Microbiol 1989; 135:2623–2633
    [Google Scholar]
  16. Homer K. A., Denbow L., Whiley R. A., Beighton D. Chondroitin sulfate depolymerase and hyaluronidase activities of viridans streptococci determined by a sensitive spectrophotometric assay. J Clin Microbiol 1993; 31:1648–1651
    [Google Scholar]
  17. Whiley R. A., Beighton D., Winstanley T. G., Fraser H. Y., Hardie J. M. Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J Clin Microbiol 1992; 30:243–244
    [Google Scholar]
  18. Whiley R. A., Fraser H., Hardie J. M., Beighton D. Phenotypic differentiation of Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus within the “ Streptococcus milleri group”. J Clin Microbiol 1990; 28:1497–1501
    [Google Scholar]
  19. Homer K. A., Grootveld M. C., Hawkes J., Naughton D. P., Beighton D. Degradation of hyaluronate by Streptococcus intermedius strain UNS 35. J Med Microbiol 1994; 41:414–422
    [Google Scholar]
  20. Russell R. R. B. Comparison of oral Streptococcus mutans AHT with strains of serotypes a and g by biochemical and electrophoretic methods. Arch Oral Biol 1979; 24:617–619
    [Google Scholar]
  21. Linn S., Chan T., Lipeski L., Salyers A. A. Isolation and characterization of two chondroitin lyases from Bacteroides thetaiotaomicron . J Bacteriol 1983; 156:859–866
    [Google Scholar]
  22. Meynell G. G., Meynell E. Theory and practice in experimental bacteriology. 2nd edn Cambridge: Cambridge University Press; 1970
    [Google Scholar]
  23. Homer K. A., Denbow L., Beighton D. Spectrophotometric method for the assay of glycosaminoglycans and glycosamitloglycan-depolymerizing enzymes. Anal Biochem 1993; 214:435–441
    [Google Scholar]
  24. Benchetrit L. C., Pahuja S. L., Gray E. D., Edstrom R. D. A sensitive method for the assay of hyaluronidase activity. Anal Biochem 1977; 79:431–137
    [Google Scholar]
  25. Lewy G. A., McAllan A. The N-acetylation and estimation of hexosamines. Biochem J 1959; 73:127–132
    [Google Scholar]
  26. Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem 1968; 243:1536–1542
    [Google Scholar]
  27. Shibata S., Midura R. J., Hascall V. C. Structural analysis of the linkage region of oligosaccharides and unsaturated disaccharides from chondroitin sulfate using carboPac PA1. J Biol Chem 1992; 267:6548–6555
    [Google Scholar]
  28. Hibi E., Osano E., Fujii Y., Moriyama T. Chondroitinase C activity of Streptococcus intermedius . FEMS Microbiol Lett 1989; 57:121–124
    [Google Scholar]
  29. Lloyd A. G. Chondrosulfatase from Proteus vulgaris . Methods Enzymol 1966; 8:663–670
    [Google Scholar]
  30. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chrondroitinases and chondrosulfatases. J Biol Chem 1968; 243:1523–1535
    [Google Scholar]
  31. Yamada T., Carlsson J. Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol 1975; 124:55–61
    [Google Scholar]
  32. Yamada T., Carlsson J. The role of pyruvate formate-lyase in glucose metabolism of Streptococcus mutans . In Stiles H. M., Loesche W. J., O’Brien T. C. (eds) Microbial aspects of dental caries Washington, DC: Information Retrieval; 1976809–819
    [Google Scholar]
  33. Smith R. F., Willett N. P. Rapid plate method for screening hyaluronidase and chrondroitin sulfatase-producing microorganisms. Appl Microbiol 1968; 16:1434–1436
    [Google Scholar]
  34. Michelacci Y. M., Dietrich C. P. Chrondroitinase C from Flavo-bacterium heparinum . J Biol Chem 1976; 251:1154–1158
    [Google Scholar]
  35. Salyers A. A. Energy sources of major intestinal fermentative anaerobes. Am J Clin Nutr 1979; 32:158–163
    [Google Scholar]
  36. Salyers A. A., Kotanski S. F. Induction of chondroitin sulfate lyase activity in Bacteroides thetaiotaomicron . J Bacteriol 1980; 143:781–788
    [Google Scholar]
  37. Homer K. A., Whiley R. A., Beighton D. Production of specific glycosidase activities by Streptococcus intermedius strain UNS35 grown in the presence of mucin. J Med Microbiol 1994; 41:184–190
    [Google Scholar]
  38. Salyers A. A., O’Brien M. Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotao-micron . J Bacteriol 1980; 143:772–780
    [Google Scholar]
  39. Rodén L. Structure and metabolism of connective tissue proteoglycans. In Lennarz W. J. (ed) The biochemistry of glycoproteins and proteoglycans New York: Plenum Press; 1980267–371
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-44-5-372
Loading
/content/journal/jmm/10.1099/00222615-44-5-372
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error