1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-12-2891
1993-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/12/mic-139-12-2891.html?itemId=/content/journal/micro/10.1099/00221287-139-12-2891&mimeType=html&fmt=ahah

References

  1. Anton I.A., Duncan K., Coggins J.R. 1987; A eukaryotic repressor protein, the qa-1s gene product of Neurospora crassa, is homologous to part of the AROM multifunctional enzyme. Journal of Molecular Biology 197:367–371
    [Google Scholar]
  2. Bentley R. 1990; The shikimate pathway -a metabolic tree with many branches. Critical Reviews in Biochemistry and Molecular Biology 25:307–384
    [Google Scholar]
  3. Beri R.K., Whittington H., Roberts C.F., Hawkins A.R. 1987; Isolation and characterization of the positively acting regulatory gene qutA from Aspergillus nidulans. Nucleic Acids Research 15:7991–8001
    [Google Scholar]
  4. Boys C.W.G., Bury S.M., Sawyer L., Moore J.D., Charles I.G., Hawkins A.R., Deka R., Kleanthous C., Coggins J.R. 1992; Crystallisation of a type I 3-dehydroquinase from Salmonella typhi. Journal of Molecular Biology 227:352–355
    [Google Scholar]
  5. Braus G.H. 1991; Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiological Reviews 55:349–370
    [Google Scholar]
  6. Case M.E., Giles N.H. 1971; Partial enzyme aggregates formed by pleiotropic mutants in the arom gene cluster of Neurospora crassa. Proceedings of the National Academy of Sciences of the United States of America 6858–62
    [Google Scholar]
  7. Case M.E., Burgoyne L., Giles N.H. 1969; In vivo and in vitro complementation between DHQ synthetase mutants in the AROM gene cluster of Neurospora crassa. Genetics 63:581–588
    [Google Scholar]
  8. Charles I.G., Keyte J.W., Brammar W.J., Smith M., Hawkins A.R. 1986; The isolation and nucleotide sequence of the complex arom locus of Aspergillus nidulans. Nucleic Acids Research 14:2201–2213
    [Google Scholar]
  9. Clements J.M., Roberts C.F. 1986; Transcription and processing signals in the 3-phosphoglycerate kinase (PGK) gene from Aspergillus nidulans. Gene 44:97–105
    [Google Scholar]
  10. Da Silva A.J.S., Whittington H., Clements J., Roberts C.F., Hawkins A.R. 1986; Sequence analysis and transformation of the catabolic 3-dehydroquinase (qutE) gene from Aspergillus nidulans. Biochemical Journal 240:481–488
    [Google Scholar]
  11. Doy C.H. 1968; Control of aromatic biosynthesis particularly with regard to the common pathway and the allosteric enzyme, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase. Reviews of Pure and Applied Chemistry 18:41–78
    [Google Scholar]
  12. Duncan K., Edwards R.M., Coggins J.R. 1987; The pentafunctional AROM protein is a mosaic of monofunctional enzymes. Biochemical Journal 246:375–386
    [Google Scholar]
  13. Duncan K., Edwards R.M., Coggins J.R. 1988; The Saccharomyces cerevisiae ARO1 gene: an example of the co-ordinate regulation of five enzymes on a single biosynthetic pathway. FEBS Letters 241:83–88
    [Google Scholar]
  14. Euverink G.J.W., Hessels G.J., Vrijbloed J.W., Coggins J.R., Dijkhuizen L. 1992; Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica. Journal of General Microbiology 138:2449–2457
    [Google Scholar]
  15. Gaertner F.H., Ericson M.C., De Moss J.A. 1970; Catalytic facilitation in vitro by two multienzyme complexes from Neurospora crassa. Journal of Biological Chemistry 245:595–600
    [Google Scholar]
  16. Garbe T., Servos S., Hawkins A.R., Dimitriadis G., Young D., Charles I.G. 1991; The Mycobacterium tuberculosis shikimate pathway genes: evolutionary relationship between biosynthetic and catabolic 3-dehydroquinases. Molecular and General Genetics 228:385–392
    [Google Scholar]
  17. Geever R.F., Huiett L., Baum J.A., Tyler B.M., Patel V.B., Rutledge B.J., Case M.E., Giles N.H. 1989; DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. Journal of Molecular Biology 207:15–34
    [Google Scholar]
  18. Giles N.H. 1978; The organization, function and evolution of gene clusters in eukaryotes. American Naturalist 112:641–657
    [Google Scholar]
  19. Giles N.H., Partridge C.W.H., Ahmed S.I., Case M.E. 1967; The occurrence of two dehydroquinases in Neurospora crassa: one constitutive and one inducible. Proceedings of the National Academy of Sciences of the United States of America 581930–1937
    [Google Scholar]
  20. Giles N.H., Case M.E., Baum J., Geever R., Huiet L., Patel V.B., Tyler B. 1985; Gene organization and regulation, in the qa (quinic acid) gene cluster of Neurospora crassa. Microbiological Reviews 49:338–358
    [Google Scholar]
  21. Giles N.H., Geever R.F., Asch D.K., Avalos J., Case M.E. 1991; Organization and regulation of the qa (quinic acid) genes in Neurospora crassa and other fungi. Journal of Heredity 82:1–7
    [Google Scholar]
  22. Grant S., Roberts C.F., Lamb H.K., Stout M., Hawkins A.R. 1988; Genetic regulation of the quinic acid utilization (qut) gene cluster in Aspergillus nidulans. Journal of General Microbiology 134:347–358
    [Google Scholar]
  23. Grund E., Knorr C., Eichenlaub R. 1990; Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp. Applied and Environmental Microbiology 56:1459–1464
    [Google Scholar]
  24. Harris J., Kleanthous C., Coggins J.R., Hawkins A.R., Abell C. 1993; Different mechanistic and stereochemical courses for the reactions catalysed by type I and type II dehydroquinases. Journal of the Chemical Society Chemical Communications 13:1080–1081
    [Google Scholar]
  25. Hawkins A.R. 1987; The complex arom locus of Aspergillus nidulans: evidence for multiple gene fusions and convergent evolution. Current Genetics 11:491–498
    [Google Scholar]
  26. Hawkins A.R., Smith M. 1991; Domain structure and interaction within the pentafunctional AROM polypeptide. European Journal of Biochemistry 196:717–724
    [Google Scholar]
  27. Hawkins A.R., Da Silva A.J.F., Roberts C.F. 1985; Cloning and characterization of the three enzyme structural genes qutB, qutC and qutE from the quinic acid utilization gene cluster of Aspergillus nidulans. Current Genetics 9:305–311
    [Google Scholar]
  28. Hawkins A.R., Lamb H.K., Smith M., Keyte J.W., Roberts C.F. 1988; Molecular organization of the quinic acid utilization (qut) gene cluster in Aspergillus nidulans. Molecular and General Genetics 214:224–231
    [Google Scholar]
  29. Hawkins A.R., Lamb H.K., Roberts C.F. 1992; Structure of the Aspergillus nidulans qut repressor-encoding gene: implications for the regulation of transcription initiation. Gene 110:109–114
    [Google Scholar]
  30. Hawkins A.R., Lamb H.K., Moore J.D., Roberts C.F. 1993a; Genesis of eukaryotic transcriptional activator and repressor proteins by splitting a multidomain anabolic enzyme. Gene in the Press
    [Google Scholar]
  31. Hawkins A.R., Moore J.D., Adeokun A.M. 1993b; Characterization of the 3-dehydroquinase domain of the pentafunctional AROM protein, and the quinate dehydrogenase from Aspergillus nidulans and the overproduction of the type II dehydroquinase from Neurospora crassa. Biochemical Journal in the Press
    [Google Scholar]
  32. Hawkins A.R., Moore J.D., Lamb H.K. 1993c; The molecular biology of the pentafunctional AROM protein. Biochemical Society Transactions 21:181–186
    [Google Scholar]
  33. Ingledew W.M., Tresguerres M.E.F., Cánovas J.L. 1971; Regulation of the enzymes of the hydroaromatic pathway in Acinetobacter calco-aceticus. Journal of General Microbiology 68:273–282
    [Google Scholar]
  34. Kleanthous C., Deka R., Davis K., Kelly S.M., Cooper A., Harding S.E., Price C., Hawkins A.R., Coggins J.R. 1992; A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes. Biochemical Journal 282:687–695
    [Google Scholar]
  35. Koshiba T. 1978; Purification of two forms of the associated 3- dehydroquinate hydro-lyase and shikimate: NADP+ oxidoreductase in Phaseolus mungo seedlings. Biochimica et Biophysica Acta 522:10–18
    [Google Scholar]
  36. Lamb H.K., Hawkins A.R., Smith M., Harvey I.J., Brown J., Turner G., Roberts C.F. 1990; Spatial and biological characterization of the complete quinic acid utilization gene cluster in Aspergillus nidulans. Molecular and General Genetics 223:17–23
    [Google Scholar]
  37. Lamb H.K., Bagshaw C.R., Hawkins A.R. 1991; In vivo overproduction of the pentafunctional AROM polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway. Molecular and General Genetics 227:187–196
    [Google Scholar]
  38. Lamb H.K., Roberts C.F., Hawkins A.R. 1992a; A second gene (qutH) within the Aspergillus nidulans quinic acid gene cluster encodes a protein with a putative zinc cluster motif. Gene 112:219–224
    [Google Scholar]
  39. Lamb H.K., Van Den Hombergh J.P.T.W., Newton G.H., Moore J.D., Roberts C.F., Hawkins A.R. 1992b; Differential flux through the quinate and shikimate pathways: implications for the channeling hypothesis. Biochemical Journal 284:181–187
    [Google Scholar]
  40. Lambert J.M., Boocock M.R., Coggins J.R. 1985; The 3-dehydroquinate synthase activity of the pentafunctional AROM complex of Neurospora crassa is Zn2+ dependent. Biochemical Journal 226:817–829
    [Google Scholar]
  41. Lumsden J., Coggins J.R. 1978; The subunit structure of the AROM multienzyme complex of Neurospora crassa: evidence from peptide maps for the identity of the subunits. Biochemical Journal 169:441–444
    [Google Scholar]
  42. Moore J.D., Hawkins A.R. 1993; Overproduction of, and interaction within bi-functional domains from the amino and carboxy termini of the pentafunctional AROM protein of Aspergillus nidulans. Molecular and General Genetics 240:92–102
    [Google Scholar]
  43. Moore J.D., Lamb H.K., Garbe T., Servos S., Dougan G., Charles I.G., Hawkins A.R. 1992; Inducible overproduction of the Aspergillus nidulans pentafunctional AROM protein and the type I and II 3-dehydroquinases from Salmonella typhi and Mycobacterium tuberculosis. Biochemical Journal 287:173–181
    [Google Scholar]
  44. Moore J.D., Hawkins A.R., Charles I.G., Deka R., Coggins J.R., Cooper A., Kelly S.M., Price N.C. 1993; Characterization of the type I dehydroquinase from Salmonella typhi. Biochemical Journal in the Press
    [Google Scholar]
  45. Mousdale D.M., Campbell M.S., Coggins J.R. 1987; Purification and characterization of bifunctional dehydroquinase-shikimate:NADP oxidoreductase from pea seedlings. Phytochemistry 26:2665–2670
    [Google Scholar]
  46. Mylin L.M., Johnston M., Hopper J.E. 1990; Phosphorylated forms of GAL4 are correlated with ability to activate transcription. Molecular and Cell Biology 10:4623–4629
    [Google Scholar]
  47. Neuwald N.F., York J.D., Majerus P.W. 1991; Diverse proteins homologous to inositol monophosphatase. FEBS Letters 294:16–18
    [Google Scholar]
  48. Niederberger P., Prasad R., Miozzari G., Kacser H. 1992; A strategy for increasing an in vivo flux by genetic manipulations: the tryptophan system of yeast. Biochemical Journal 287:473–479
    [Google Scholar]
  49. Nimmo G.A., Coggins J.R. 1981; Some kinetic properties of the tryptophan-sensitive 3-deoxy-d-arabino heptulosonate-7-phosphate synthase from Neurospora crassa. Biochemical Journal 199:657–665
    [Google Scholar]
  50. O’connell C., Pattee P.A., Foster T.J. 1993; Sequence and mapping of the aroA gene of Staphylococcus aureus 8325–4. Journal of General Microbiology 139:1449–1460
    [Google Scholar]
  51. Pittard A.J. 1987; Biosynthesis of the aromatic amino acids. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology 1 pp. 368–394 Niedhardt F.C. others Edited by Washington, DC: American Society for Microbiology.;
    [Google Scholar]
  52. Ptashne M. 1988; How eukaryotic transcription activators work. Nature; London: 335683–689
    [Google Scholar]
  53. Shneier A., Harris J., Kleanthous C., Coggins J.R., Hawkins A.R., Abell C. 1993; Evidence for opposite stereochemical courses for the reactions catalysed by type I and type II dehydro-quinases. Bio-organic and Medicinal Chemistry Letters 3:1399–1402
    [Google Scholar]
  54. Smith D.D.S., Coggins J.R. 1983; Isolation of a bifunctional domain from the pentafunctional AROM enzyme complex of Neurospora crassa. Biochemical Journal 213:405–415
    [Google Scholar]
  55. Tresguerres M.E.F., De Torrontegui G., Cánovas J.L. 1970a; The metabolism of quinate by Acinetobacter calco-aceticus. Archiv für Mikrobiologie 70:110–118
    [Google Scholar]
  56. Tresguerres M.E.F., De Torrontegui G., Ingledew W., Cánovas J.L. 1970b; Regulation of β-ketoadipate pathway in Moraxella. Control of quinate oxidation by protocatechuate. European Journal of Biochemistry 14:445–450
    [Google Scholar]
  57. Van Den Hombergh J.P.T.W., Moore J.D., Charles I.G., Hawkins A.R. 1992; Overproduction in Escherichia coli of the dehydroquinate synthase domain of the Aspergillus nidulans pentafunctional AROM protein. Biochemical Journal 284:861–867
    [Google Scholar]
  58. Walker J.E., Saraste M., Runswick M.J., Gay N.J. 1982; Distantly related sequences in the α- and β -subunits of ATP synthase, myosin kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal 1:945–951
    [Google Scholar]
  59. Welch G.R., Gaertner F.H. 1975; Influence of an aggregated multienzyme system on transient time: kinetic evidence of compartmentation by an aromatic amino acid synthesizing complex of Neurospora crassa. Proceedings of the National Academy of Sciences of the United States of America 72:4218–4222
    [Google Scholar]
  60. Welch G.R., Gaertner F.H. 1976; Co-ordinate activation of a multienzyme complex by the first substrate. Evidence for a novel regulatory mechanism in the polyaromatic pathway of Neurospora crassa. Archives of Biochemistry and Biophysics 172:476–489
    [Google Scholar]
  61. White P.J., Young J., Hunter I.S., Nimmo H.G., Coggins J.R. 1990; The purification and characterization of 3-dehydroquinase from Streptomyces coelicolor. Biochemical Journal 165:735–738
    [Google Scholar]
  62. Whittington H.A., Grant S., Roberts C.F., Lamb H.K., Hawkins A.R. 1987; Identification and isolation of a putative permease gene in the quinic acid utilisation gene cluster of Aspergillus nidulans. Current Genetics 12:135–139
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-12-2891
Loading
/content/journal/micro/10.1099/00221287-139-12-2891
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error